[1] 朱志斌, 郭志军, 刘英, 等.  氧化铝陶瓷的发展与应用[J]. 陶瓷, 2003, 161(1): 5-8.   doi: 10.3969/j.issn.1002-2872.2003.01.001
ZHU Z B, GUO Z J, LIU Y, et al.  Development and application of alumina ceramic[J]. Ceramics, 2003, 161(1): 5-8.   doi: 10.3969/j.issn.1002-2872.2003.01.001
[2] 胡玉龙, 蒋凡.  装甲陶瓷的发展现状和趋势[J]. 兵器材料科学与工程, 1996, 19(5): 37-42.   doi: 10.14024/j.cnki.1004-244x.1996.05.008
HU Y L, JIANG F.  Development and current status of armor ceramics[J]. Ordnance Material Science and Engineering, 1996, 19(5): 37-42.   doi: 10.14024/j.cnki.1004-244x.1996.05.008
[3]

李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究[D]. 南京: 南京航空航天大学, 2008: 6−7. DOI: 10.7666/d.d052470.

[4] STRAßBURGER E.  Ballistic testing of transparent armour ceramics[J]. Journal of the European Ceramic Society, 2009, 29(2): 267-273.   doi: 10.1016/j.jeurceramsoc.2008.03.049
[5] 吴燕平, 燕青芝.  防弹装甲中的陶瓷材料[J]. 兵器材料科学与工程, 2017, 40(4): 141-146.   doi: 10.14024/j.cnki.1004-244x.20170630.001
WU Y P, YAN Q Z.  Application of ceramics in armor protection[J]. Ordnance Material Science and Engineering, 2017, 40(4): 141-146.   doi: 10.14024/j.cnki.1004-244x.20170630.001
[6]

唐录成. 平面冲击加载下A95陶瓷动态力学性能研究[D]. 重庆: 重庆大学, 2009: 1−10. DOI: 10.7666/d.y1666484.

[7] JIAO T, LI Y, RAMESH K T, et al.  High rate response and dynamic failure of structural ceramics[J]. International Journal of Applied Ceramic Technology, 2010, 1(3): 243-253.   doi: 10.1111/j.1744-7402.2004.tb00176.x
[8] KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P.  A scaling law for the dynamic strength of brittle solids[J]. Acta Materialia, 2013, 61(9): 3509-3521.   doi: 10.1016/j.actamat.2013.02.045
[9] SZLUFARSKA I, RAMESH K T, WARNER D H.  Simulating mechanical behavior of ceramics under extreme conditions[J]. Annual Review of Materials Research, 2013, 43(1): 131-156.   doi: 10.1146/annurev-matsci-071312-121714
[10] JOHNSON G R, HOLMQUIST T J.  An improved computational constitutive model for brittle materials[J]. American Institute of Physics, 1994, 309(1): 981-984.   doi: 10.1063/1.46199
[11] 杨震琦, 庞宝君, 王立闻, 等.  JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用[J]. 爆炸与冲击, 2010, 30(5): 463-471.   doi: 10.11883/1001-1455(2010)05-0463-09
YANG Z Q, PANG B J, WANG L W, et al.  JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact[J]. Explosion and Shock Waves, 2010, 30(5): 463-471.   doi: 10.11883/1001-1455(2010)05-0463-09
[12] 李英雷, 胡时胜, 李英华.  A95陶瓷材料的动态压缩测试研究[J]. 爆炸与冲击, 2004, 24(3): 233-239.
LI Y L, HU S S, LI Y H.  Research on dynamic behaviors of A95 ceramics under compression[J]. Explosion and Shock Waves, 2004, 24(3): 233-239.
[13] 张晓晴, 姚小虎, 宁建国, 等.  Al2O3陶瓷材料应变率相关的动态本构关系研究[J]. 爆炸与冲击, 2004, 24(3): 226-232.
ZHANG X Q, YAO X H, NING J G, et al.  A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics[J]. Explosion and Shock Waves, 2004, 24(3): 226-232.
[14]

刘荫秋, 王正国, 马玉媛. 创伤弹道学[M]. 北京: 人民军医出版社, 1991: 76−77.

[15]

靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014: 27−57.

[16] 周风华, 王永刚.  影响冲击载荷下脆性材料碎片尺度的因素[J]. 爆炸与冲击, 2008, 28(4): 298-303.   doi: 10.11883/1001-1455(2008)04-0298-06
ZHOU F H, WANG Y G.  Factors controlling sizes of brittle fragments due to impact loadings[J]. Explosion and Shock Waves, 2008, 28(4): 298-303.   doi: 10.11883/1001-1455(2008)04-0298-06
[17] 周风华, 郭丽娜, 王礼立.  脆性固体碎裂过程中的最快卸载特性[J]. 固体力学学报, 2010, 31(3): 129-133.   doi: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009
ZHOU F H, GUO L N, WANG L L.  The rapidest unloading characteristics in the fragmentation process of brittle solids[J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 129-133.   doi: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009
[18] SHAN J F, XU S L, LIU Y G, et al.  Dynamic breakage of glass sphere subjected to impact loading[J]. Powder Technology, 2018, 330: 317-329.   doi: 10.1016/j.powtec.2018.02.009
[19] HUANG J Y, E J C, HUANG J W, et al.  Dynamic deformation and fracture of single crystal silicon: fracture modes, damage laws, and anisotropy[J]. Acta Materialia, 2016, 114: 136-145.   doi: 10.1016/j.actamat.2016.05.022
[20] 许峰, 胡小方, 卢斌, 等.  碳化硼固相烧结微观结构演化的同步辐射CT观测[J]. 无机材料学报, 2009, 24(1): 175-181.   doi: 10.3724/SP.J.1077.2009.00175
XU F, HU X F, LU B, et al.  Microstructures-evolution observation of boron carbide ceramic during sintering process by synchrotron radiation X-ray computed tomography[J]. Journal of Inorganic Materials, 2009, 24(1): 175-181.   doi: 10.3724/SP.J.1077.2009.00175
[21] SHENG J, LUMING S, FRANÇOIS G, et al.  Energy dissipation from two-glass-bead chains under impact[J]. International Journal of Impact Engineering, 2018, 114: 160-168.   doi: 10.1016/j.ijimpeng.2018.01.002
[22] BIE B X, HUANG J Y, FAN D, et al.  Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study[J]. Carbon, 2017, 121: 127-133.   doi: 10.1016/j.carbon.2017.05.083
[23] KONG D, FONSECA J.  Quantification of the morphology of shelly carbonate sands using 3D images[J]. Géotechnique, 2017, 68(3): 1-13.   doi: 10.1680/jgeot.16.p.278
[24] RAVICHANDRAN G, SUBHASH G.  Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267.   doi: 10.1111/j.1151-2916.1994.tb06987.x
[25] SONG B, CHEN W.  Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops[J]. Experimental Mechanics, 2004, 44(6): 622-627.   doi: 10.1007/BF02428252
[26] GURSOY D, DE C F, XIAO X H, et al.  TomoPy: a framework for the analysis of synchrotron tomographic data[J]. Journal of Synchrotron Radiation, 2014, 21(5): 1188-1193.   doi: 10.1107/S1600577514013939
[27] FOK S L, MITCHELL B C, SMART J, et al.  A numerical study on the application of Weibull theory to brittle materials[J]. Engineering Fracture Mechanics, 2001, 68(10): 1171-1179.   doi: 10.1016/S0013-7944(01)00022-4
[28] HUANG J, XU S, YI H, et a1.  Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268(1): 86-94.   doi: 10.1016/j.powtec.2014.08.037
[29] KELEŞ Ö, GARCÍA R E, BOWMAN K J.  Deviations from Weibull statistics in brittle porous materials[J]. Acta Materialia, 2013, 61(19): 7207-7215.   doi: 10.1016/j.actamat.2013.08.025
[30] STAEHLER J M, PREDEBON W W, PLETKA B J, et al.  Micromechanisms of deformation in high-purity hot-pressed alumina[J]. Materials Science & Engineering: A, 2000, 291(1-2): 37-45.   doi: 10.1016/s0921-5093(00)00976-x
[31] THEODOROU D N, SUTER U W.  Shape of unperturbed linear polymers: polypropylene[J]. Macromolecules, 1985, 18(6): 1206-1214.   doi: 10.1021/ma00148a028
[32] FAROOQUE T M, CAMP C H, TISON C K, et al.  Measuring stem cell dimensionality in tissue scaffolds[J]. Biomaterials, 2014, 35(9): 2558-2567.   doi: 10.1016/j.biomaterials.2013.12.092