[1] |
杨继峰, 刘丙杰, 陈捷, 等. 潜射弹道导弹水下大深度发射技术途径分析 [J]. 兵器装备工程学报, 2020, 41(06): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.YANG J F, LIU B J, CHEN J, et al. Research on underwater large depth launching technology of submarine launched ballistic missile [J]. Journal of Ordnance Equipment Engineering, 2020, 41(06): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
|
[2] |
王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展 [J]. 力学进展, 2018, 48(00): 259–298. DOI: 10.6052/1000-0992-16-020.WANG Y W, HUANG C G. Research progress on hydrodynamics of high speed vehicles in the underwater launching progress [J]. Advances in Mechanics, 2018, 48(00): 259–298. DOI: 10.6052/1000-0992-16-020.
|
[3] |
包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真 [J]. 兵工学报, 2023, 1–14.BAO J, MA G H, SUN L Q, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags [J]. Acta Armamentarii, 2023: 1–14.
|
[4] |
陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(05): 1155–1164. DOI: 10.11883/bzycj-2017-0387.CHEN Y, WU L, ZHEN G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(05): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
|
[5] |
林赓. 气囊结构落水砰击瞬态流固耦合特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016.
|
[6] |
陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究 [J]. 船舶力学, 2022, 26(03): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.CHEN K Y, CHEN H, WEI H P, et al. Simulation and experimental study on a cylinder with airbags falling into water [J]. Journal of Ship Mechanics, 2022, 26(03): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
|
[7] |
JIANG Y Y, TANG W Y. Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle [J]. Ocean Engineering, 2022, 247(1–3): 110653. DOI: 10.1016/j.oceaneng.2022.110653.
|
[8] |
DANG H X, ZHANG X G, LI B, et al. Multi-disciplinary co-simulation of floating process induced by pneumatic inflatable collar for underwater vehicle recovery [J]. Ocean Engineering, 2020, 216(6): 108008. DOI: 10.1016/j.oceaneng.2020.108008.
|
[9] |
ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246: 593–612. DOI: 10.1017/S002211209300028X.
|
[10] |
CHAUDHRY A Z, SHI Y, PAN G. Recent developments on the water entry impact of wedges and projectiles [J]. Ships and Offshore Structures, 2020, 17(3): 1–20. DOI: 10.1080/17445302.2020.1835053.
|
[11] |
王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
|
[12] |
黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
|
[13] |
王世晟, 鲍文春, 韩敬永, 等. 回转体头部通气入水流场演化与载荷特性数值预报研究 [J]. 爆炸与冲击, 2022, 42(05): 52–62. DOI: 10.11883/bzycj-2021-0494.WANG S S, BAO W C, HAN J Y, et al. Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry [J]. Explosion and Shock Waves, 2022, 42(05): 52–62. DOI: 10.11883/bzycj-2021-0494.
|
[14] |
TRUSCOTT T T, EPPS B P, BELDEN J. Water Entry of Projectiles [J]. Annual Review of Fluid Mechanics, 2014, 46: 255–378. DOI: 10.1146/annurev-fluid-011212-140753.
|
[15] |
DU Y, WANG Z Y, WANG Y W, et al. Study on the cavity dynamics of water entry for horizontal objects with different geometrical shapes [J]. Ocean Engineering, 2022, 252(6): 111242. DOI: 10.1016/j.oceaneng.2022.111242.
|
[16] |
SUN Y T, LI S, MING F R, et al. An experimental study of the water entry trajectories of truncated cone projectiles: The influence of nose parameters [J]. Physics of Fluids, 2022, 34(5): 052102. DOI: 10.1063/5.0089366.
|
[17] |
SHI W K, SHEN Y M, CHEN J Q, et al. SPH simulations on water entry characteristics of a re-entry capsule [J]. Engineering Analysis with Boundary Elements, 2020, 119(4): 257–268. DOI: 10.1016/j.enganabound.2020.07.018.
|
[18] |
YU P Y, XIE H, LIU F, et al. Numerical investigation on the water entry of a 2D seaplane section with heel angles [J]. Ocean Engineering, 2022, 262(2): 112236. DOI: 10.1016/j.oceaneng.2022.112236.
|
[19] |
高英杰, 孙铁志, 张桂勇, 等. 回转体高速倾斜入水的流场特性及结构响应 [J]. 爆炸与冲击, 2020, 40(12): 101–113. DOI: 10.11883/bzycj-2020-0014.GAO Y J, SUN T Z, ZHANG G Y, et al. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body [J]. Explosion and Shock Waves, 2020, 40(12): 101–113. DOI: 10.11883/bzycj-2020-0014.
|
[20] |
Plesset M. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16: 277–282. DOI: 10.1007/BF02120348.
|
[21] |
Wei Z Y, Hu C H. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science & Technology, 2014, 19(3): 338–350. DOI: 10.1007/s00773-013-0252-z.
|