带气囊航行体下落入水冲击过程数值模拟

段金雄 陆德顺 林威 孙铁志

段金雄, 陆德顺, 林威, 孙铁志. 带气囊航行体下落入水冲击过程数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0170
引用本文: 段金雄, 陆德顺, 林威, 孙铁志. 带气囊航行体下落入水冲击过程数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0170
DUAN Jinxiong, LU Deshun, LIN Wei, SUN Tiezhi. Numerical simulation on water entry impact process of the vehicle with airbags[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0170
Citation: DUAN Jinxiong, LU Deshun, LIN Wei, SUN Tiezhi. Numerical simulation on water entry impact process of the vehicle with airbags[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0170

带气囊航行体下落入水冲击过程数值模拟

doi: 10.11883/bzycj-2023-0170
基金项目: 国家自然科学基金面上项目(52071062)
详细信息
    作者简介:

    段金雄(1998- ),男,硕士研究生,ychdjx2536843982@163.com

    通讯作者:

    孙铁志(1986- ),男,博士,教授,suntiezhi@dlut.edu.cn

  • 中图分类号: O

Numerical simulation on water entry impact process of the vehicle with airbags

  • 摘要: 为探究带气囊航行体下落入水过程中的运动演化过程以及载荷作用特性,基于VOF(Volume of Fluid)多相流模型和k-ω SST湍流模型,开展了带气囊航行体倾斜下落入水冲击过程的数值模拟。通过将数值计算得到的水平圆柱入水过程空泡形态以及下落位移与试验结果进行对比,验证了所采用的数值方法的适用性与准确性,并分析了带气囊航行体倾斜下落入水过程中航行体的运动演化过程以及载荷作用特性。结果表明,航行体下落入水过程分为了冲击入水阶段与升沉衰减阶段,其中航行体尾部砰击,气囊砰击以及气囊加速展开等过程均会形成局部冲击加速度峰值,并且气囊加速展开砰击水体造成的加速度峰值最大;其次,气囊冲击入水过程中的气囊冲击受力会导致气囊与航行体之间的设计连杆出现较大的拉力峰值;最后,入水空泡溃灭载荷会造成航行体局部压力波动,极大影响航行体的入水姿态变化。综合分析认为气囊装置可以为航行体下落入水提供较好的缓冲保护,计算所得到的带气囊航行体下落冲击响应数据可以为航行体缓冲回收装置设计提供参考依据。
  • 图  1  水平圆柱入水空泡形态试验与数值结果对比

    Figure  1.  Comparison of experimental and numerical results of horizontal cylinder water-entry cavity shape

    图  2  水平圆柱下落过程质心位置时历曲线对比

    Figure  2.  Comparison of the time history curve of horizontal cylinder’s centroid position during falling process

    图  3  计算模型具体设计与尺寸

    Figure  3.  Computational model specific design and size

    图  4  计算域尺寸及其设置

    Figure  4.  Computing domains size and settings

    图  5  计算域网格

    Figure  5.  Mesh of computing domains

    图  6  航行体初始下落位置

    Figure  6.  Initial drop position of vehicle

    图  7  气囊转动角度时历曲线

    Figure  7.  Time history curve of rotation angle of airbag

    图  8  航行体下落过程

    Figure  8.  The process of vehicle falling

    图  9  航行体垂直位移时历曲线

    Figure  9.  Vertical displacement time history curve of vehicle

    图  10  航行体垂直速度时历曲线

    Figure  10.  Vertical velocity time history curve of vehicle

    图  11  航行体水平位移时历曲线

    Figure  11.  Horizontal displacement time history curve of vehicle

    图  12  航行体俯仰角度时历曲线

    Figure  12.  Pitch angle time history curve of vehicle

    图  13  航行体垂直受力时历曲线

    Figure  13.  Vertical force time history curve of vehicle

    图  14  航行体水平受力时历曲线

    Figure  14.  Horizontal force time history curve of vehicle

    图  15  航行体入水空泡演化过程

    Figure  15.  Evolution of water-entry cavity of vehicle

    图  16  航行体俯仰力矩时历曲线

    Figure  16.  Pitching moment time history curve of vehicle

    图  17  气囊受力时历曲线

    Figure  17.  Force time history curves of airbags

    图  18  气囊a表面压力等值线分布

    Figure  18.  Surface pressure contour distribution of airbag a

    图  19  气囊a表面压力分布雷达图

    Figure  19.  Surface pressure distribution radar map of airbag a

    图  20  压力监测点位置分布

    Figure  20.  Location distribution of pressure monitoring points

    图  21  流场压力演化云图

    Figure  21.  Flow field pressure evolution contour

    图  22  顶部监测点压强变化曲线

    Figure  22.  Pressure change curve at the top monitoring point

    图  23  底部监测点压强变化曲线

    Figure  23.  Pressure change curve at the bottom monitoring point

    图  24  侧流端监测点压强变化曲线

    Figure  24.  Pressure change curve at the side flow end monitoring points

    图  25  低压空泡气团的发展过程

    Figure  25.  The development process of low pressure cavitation air mass

    图  26  迎流端监测点压强曲线

    Figure  26.  Pressure curve at upstream end monitoring points

    图  27  背流端监测点压强曲线

    Figure  27.  Pressure curve at backflow end monitoring points

  • [1] 杨继峰, 刘丙杰, 陈捷, 等. 潜射弹道导弹水下大深度发射技术途径分析 [J]. 兵器装备工程学报, 2020, 41(06): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.

    YANG J F, LIU B J, CHEN J, et al. Research on underwater large depth launching technology of submarine launched ballistic missile [J]. Journal of Ordnance Equipment Engineering, 2020, 41(06): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
    [2] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展 [J]. 力学进展, 2018, 48(00): 259–298. DOI: 10.6052/1000-0992-16-020.

    WANG Y W, HUANG C G. Research progress on hydrodynamics of high speed vehicles in the underwater launching progress [J]. Advances in Mechanics, 2018, 48(00): 259–298. DOI: 10.6052/1000-0992-16-020.
    [3] 包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真 [J]. 兵工学报, 2023, 1–14.

    BAO J, MA G H, SUN L Q, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags [J]. Acta Armamentarii, 2023: 1–14.
    [4] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(05): 1155–1164. DOI: 10.11883/bzycj-2017-0387.

    CHEN Y, WU L, ZHEN G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(05): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
    [5] 林赓. 气囊结构落水砰击瞬态流固耦合特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [6] 陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究 [J]. 船舶力学, 2022, 26(03): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.

    CHEN K Y, CHEN H, WEI H P, et al. Simulation and experimental study on a cylinder with airbags falling into water [J]. Journal of Ship Mechanics, 2022, 26(03): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
    [7] JIANG Y Y, TANG W Y. Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle [J]. Ocean Engineering, 2022, 247(1–3): 110653. DOI: 10.1016/j.oceaneng.2022.110653.
    [8] DANG H X, ZHANG X G, LI B, et al. Multi-disciplinary co-simulation of floating process induced by pneumatic inflatable collar for underwater vehicle recovery [J]. Ocean Engineering, 2020, 216(6): 108008. DOI: 10.1016/j.oceaneng.2020.108008.
    [9] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246: 593–612. DOI: 10.1017/S002211209300028X.
    [10] CHAUDHRY A Z, SHI Y, PAN G. Recent developments on the water entry impact of wedges and projectiles [J]. Ships and Offshore Structures, 2020, 17(3): 1–20. DOI: 10.1080/17445302.2020.1835053.
    [11] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [12] 黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.

    HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
    [13] 王世晟, 鲍文春, 韩敬永, 等. 回转体头部通气入水流场演化与载荷特性数值预报研究 [J]. 爆炸与冲击, 2022, 42(05): 52–62. DOI: 10.11883/bzycj-2021-0494.

    WANG S S, BAO W C, HAN J Y, et al. Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry [J]. Explosion and Shock Waves, 2022, 42(05): 52–62. DOI: 10.11883/bzycj-2021-0494.
    [14] TRUSCOTT T T, EPPS B P, BELDEN J. Water Entry of Projectiles [J]. Annual Review of Fluid Mechanics, 2014, 46: 255–378. DOI: 10.1146/annurev-fluid-011212-140753.
    [15] DU Y, WANG Z Y, WANG Y W, et al. Study on the cavity dynamics of water entry for horizontal objects with different geometrical shapes [J]. Ocean Engineering, 2022, 252(6): 111242. DOI: 10.1016/j.oceaneng.2022.111242.
    [16] SUN Y T, LI S, MING F R, et al. An experimental study of the water entry trajectories of truncated cone projectiles: The influence of nose parameters [J]. Physics of Fluids, 2022, 34(5): 052102. DOI: 10.1063/5.0089366.
    [17] SHI W K, SHEN Y M, CHEN J Q, et al. SPH simulations on water entry characteristics of a re-entry capsule [J]. Engineering Analysis with Boundary Elements, 2020, 119(4): 257–268. DOI: 10.1016/j.enganabound.2020.07.018.
    [18] YU P Y, XIE H, LIU F, et al. Numerical investigation on the water entry of a 2D seaplane section with heel angles [J]. Ocean Engineering, 2022, 262(2): 112236. DOI: 10.1016/j.oceaneng.2022.112236.
    [19] 高英杰, 孙铁志, 张桂勇, 等. 回转体高速倾斜入水的流场特性及结构响应 [J]. 爆炸与冲击, 2020, 40(12): 101–113. DOI: 10.11883/bzycj-2020-0014.

    GAO Y J, SUN T Z, ZHANG G Y, et al. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body [J]. Explosion and Shock Waves, 2020, 40(12): 101–113. DOI: 10.11883/bzycj-2020-0014.
    [20] Plesset M. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16: 277–282. DOI: 10.1007/BF02120348.
    [21] Wei Z Y, Hu C H. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science & Technology, 2014, 19(3): 338–350. DOI: 10.1007/s00773-013-0252-z.
  • 加载中
图(27)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  4
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回