负高斯曲率曲面薄壁管吸能特性研究

马梓鸿 张慧乐 孙泽玉 陈慧敏 岳晓丽

马梓鸿, 张慧乐, 孙泽玉, 陈慧敏, 岳晓丽. 负高斯曲率曲面薄壁管吸能特性研究[J]. 爆炸与冲击, 2022, 42(11): 113101. doi: 10.11883/bzycj-2022-0146
引用本文: 马梓鸿, 张慧乐, 孙泽玉, 陈慧敏, 岳晓丽. 负高斯曲率曲面薄壁管吸能特性研究[J]. 爆炸与冲击, 2022, 42(11): 113101. doi: 10.11883/bzycj-2022-0146
MA Zihong, ZHANG Huile, SUN Zeyu, CHEN Huimin, YUE Xiaoli. Study on energy absorption characteristics of thin-walled tubes with negative Gaussian curvature[J]. Explosion And Shock Waves, 2022, 42(11): 113101. doi: 10.11883/bzycj-2022-0146
Citation: MA Zihong, ZHANG Huile, SUN Zeyu, CHEN Huimin, YUE Xiaoli. Study on energy absorption characteristics of thin-walled tubes with negative Gaussian curvature[J]. Explosion And Shock Waves, 2022, 42(11): 113101. doi: 10.11883/bzycj-2022-0146

负高斯曲率曲面薄壁管吸能特性研究

doi: 10.11883/bzycj-2022-0146
基金项目: 上海市轻质结构复合材料重点实验室开放课题 (2232021A4-06)
详细信息
    作者简介:

    马梓鸿(1998- ),男,硕士研究生,jeffreymzh@foxmail.com

    通讯作者:

    岳晓丽(1968- ),女,博士,教授,xlyue@dhu.edu.cn

  • 中图分类号: O347;TB331

Study on energy absorption characteristics of thin-walled tubes with negative Gaussian curvature

  • 摘要: 为设计出具备优良吸能特性的薄壁结构,提出一种新型负高斯曲率曲面圆形横截面薄壁管(negative Gaussian curvature surface circular tube, NGC-C)。利用经验证的有限元分析方法对其进行轴向动态冲击模拟,提取各项性能指标,借助复杂比例评估法(complex proportion assessment, COPRAS)将其与传统薄壁吸能结构进行了综合性能对比。采用拉丁超立方抽样法从设计空间中提取样本点并获取各样本点对应性能响应值,建立代理模型。基于该代理模型,借助改进非支配排序遗传算法(non-dominated sorting genetic algorithm, NSGA-Ⅱ)对其进行了多目标优化设计。结果表明:NGC-C综合性能优于传统薄壁吸能结构,经优化后比吸能提高了16.47%,有效压溃长度降低了12.40%,质量减少了20.18%。将负高斯曲率曲面形态引入薄壁管构型,能够提高薄壁管的耐撞性和轴向抗变形能力。
  • 图  1  有限元模型以及网格选择

    Figure  1.  Finite element model and element size selection

    图  2  能量变化情况

    Figure  2.  Energy change

    图  3  薄壁管变形模式的实验与模拟对比情况

    Figure  3.  Comparison of experiment and simulation of four kinds of thin-walled tube deformation modes

    图  4  S-1模型实验与数值模拟变形模式对比

    Figure  4.  Comparison of experiment and simulation deformation modes of S-1 model

    图  5  S-1模型实验与数值模拟力-位移曲线对比

    Figure  5.  Comparison of force-displacement curves between experiment and simulation of S-1 model

    图  6  冲击过程中力-位移曲线

    Figure  6.  Force-displacement curve during impact

    图  7  NGC-S剖切面示意图

    Figure  7.  Schematic diagram of section plane of NGC-S

    图  8  触发结构

    Figure  8.  Trigger structure

    图  9  变形模式对比

    Figure  9.  Comparison of deformation modes

    图  10  3类高斯曲率情况下的模型力位移曲线

    Figure  10.  Force-displacement curves of model under three kinds of Gaussian curvature

    图  11  3类高斯曲率情况下的模型性能指标比较

    Figure  11.  Comparison of model performance indexes under three kinds of Gaussian curvature

    图  12  COPRAS法流程图

    Figure  12.  Process flow chart of COPRAS method

    图  13  各组优选模型结果比较

    Figure  13.  Comparison of optimal model results of each group

    图  14  NGC-C与ZGC-O结构的应变情况

    Figure  14.  Strain of NGC-C and ZGC-O structure

    图  15  Pareto解集

    Figure  15.  Pareto solution set

    表  1  材料参数

    Table  1.   Material parameters

    材料杨氏模量/GPa泊松比屈服强度/MPa
    A6060-T569.50.33264
    下载: 导出CSV

    表  2  有限元验证模型尺寸参数[16]

    Table  2.   Finite element verification model size parameters[16]

    模型长度/mm直径/mm厚度/mm撞击初速度/(m·s−1)冲击墙质量/kg
    S-1180401.0 4.3104.5
    S-3180402.0 5.9104.5
    S-5180402.5 6.6104.5
    S-6180503.010.791.0
    下载: 导出CSV

    表  3  实验与数值模拟结果对比

    Table  3.   Comparison of experimental and simulation numerical results

    模型总吸能/J平均压溃力/kN
    实验数值模拟误差/%实验数值模拟误差/%
    S-1 998 9584.1813.0312.395.17
    S-31 8581 8351.2546.4045.791.33
    S-5226021972.8842.3041.023.12
    S-6508149961.7086.0084.032.34
    下载: 导出CSV

    表  4  指标$\delta、l、{F_0}、\eta $ 的权衡赋分过程及其权重因子$w_j $

    Table  4.   Weighing and scoring process of four indicators ($\delta,{\text{ }}l,{\text{ }}{F_0},{\text{ }}\eta $) and their weighting factors ($w_j $)

    指标 $\delta - l$$\delta - {F_{\text{0}}}$$\delta - \eta $$l - {F_{\text{0}}}$$l - \eta $${F_{\text{0}}} - \eta $${w_j}$
    $\delta $2330.333
    $l$2330.333
    F01110.126
    $\eta $1130.208
    下载: 导出CSV

    表  5  各结构COPRAS法相关计算值

    Table  5.   Relevant calculated values of COPRAS method for each structure

    结构$S + $$S - $${Q_i}$${U_i}$排名
    NGC-S0.0200.0340.23790.5411
    NGC-H0.0210.0310.24392.766
    NGC-O0.0200.0350.23890.969
    NGC-C0.0340.0310.262100.001
    PGC-S0.0410.0340.24292.377
    PGC-H0.0430.0470.25898.463
    PGC-O0.0390.0600.23489.3712
    PGC-C0.0420.0520.24995.264
    ZGC-S0.0400.0560.23991.398
    ZGC-H0.0500.0390.23790.6910
    ZGC-O0.0540.0530.26299.982
    ZGC-C0.0600.0630.24794.395
    下载: 导出CSV

    表  6  样本点及其响应

    Table  6.   Sample points and responses

    样本点T/mmG/mmR/mmδ/(J·g−1)l/mm
    12.31−0.5580.7719.1277.4
    24.921.2596.638.0319.6
    32.44−2.9969.2423.2378.3
    42.882.5786.0813.6853.3
    53.209.8576.6612.0237.2
    64.300.8875.1411.3625.8
    74.784.2071.3210.3121.1
    82.73−1.9066.3420.1261.9
    91.15−8.3782.4927.73146.2
    $\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $
    183.238.6062.2714.6341.3
    194.51−3.4964.5013.8623.6
    203.677.9273.8011.4330.9
    下载: 导出CSV

    表  7  数值模拟与代理模型预测结果对比

    Table  7.   Comparison of simulation and agent model prediction results

    项目δ/(J·g−1)l/mm
    预测结果26.2469.29
    数值模拟结果27.2173.37
    误差/% 3.56 4.19
    下载: 导出CSV
  • [1] KARL F G. 关于曲面的一般研究[M]. 陈惠勇, 译. 哈尔滨: 哈尔滨工业大学出版社, 2016: 47–83.
    [2] 郭佳民, 刘欣丹, 鲁青青, 等. 一种负高斯曲率索穹顶: CN104631620A[P]. 2015-05-20.
    [3] 陈昕, 沈世钊. 负高斯曲率单层网壳的刚度及整体稳定性研究 [J]. 哈尔滨建筑工程学院学报, 1990(2): 80–89.

    CHEN X, SHEN S Z. Study on stiffness and global stability of single-layer reticulated shells with negative Gaussian curvature [J]. Journal of Harbin Institute of Architectural Engineering, 1990(2): 80–89.
    [4] 李松晏, 郑志军. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-0.

    LI S Y, ZHENG Z J. Energy absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-0.
    [5] KARAGIOZOVA D, NURICK G N, KIM C Y, et al. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load [J]. Thin-Walled Structures, 2004, 43(6): 956–982. DOI: 10.1016/j.tws.2004.11.002.
    [6] YAMASHITA M, HATTORI T, NISHIMURA N, et al. Quasi-static and dynamic axial crushing of various polygonal tubes [J]. Key Engineering Materials, 2007, 340: 1399–1404. DOI: 10.4028/www.scientific.net/kem.340-341.1399.
    [7] LI J, LIU J, LIU H, et al. A precise theoretical model for laterally crushed hexagonal tubes [J]. Thin-Walled Structures, 2020, 152: 106750. DOI: 10.1016/j.tws.2020.106750.
    [8] ALAVI NIA A. , PARSAPOUR M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74: 155–165. DOI: 10.1016/j.tws.2013.10.005.
    [9] PIRMOHAMMAD S, ESMAEILI-MARZDASHTI S. Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes [J]. Thin-Walled Structures, 2019, 139: 126–138. DOI: 10.1016/j.tws.2019.03.004.
    [10] MAMALIS A, MANOLAKOS D, IOANNIDIS M, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section [J]. Thin-Walled Structures, 2003, 41(10): 891–900. DOI: 10.1016/s0263-8231(03)00046-6.
    [11] MAMALIS A G, MANOLAKOS, D E BALDOUKAS A K, et al. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders [J]. Thin-Walled Structures, 1991, 12(1): 17–34. DOI: 10.1016/0263-8231(91)90024-d.
    [12] AL GALIB D, LIMAM A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes [J]. Thin-Walled Structures, 2004, 42(8): 1103–1137. DOI: 10.1016/j.tws.2004.03.001.
    [13] 路国运, 段晨灏, 雷建平, 等. 金属圆柱壳受大质量低速冲击的屈曲变形 [J]. 爆炸与冲击, 2015, 35(2): 171–176. DOI: 10.11883/1001-1455(2015)02-0171-06.

    LU G Y, DUAN C H, LEI J P, et al. Dynamic buckling of the cylindrical shell impacted by large mass with low velocity [J]. Explosion and Shock Waves, 2015, 35(2): 171–176. DOI: 10.11883/1001-1455(2015)02-0171-06.
    [14] 张宗华, 刘书田. 多边形薄壁管动态轴向冲击的耐撞性研究[C]//2007中国汽车工程学会年会论文集.2007: 449–455.
    [15] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. DOI: 10.1016/S0020-7403(01)00031-5.
    [16] ZAREI H R, KRÖGER M. Multiobjective crashworthiness optimization of circular aluminum tubes [J]. Thin-Walled Structures, 2006, 44(3): 301–308. DOI: 10.1016/j.tws.2006.03.010.
    [17] HOU S J, HAN X, SUN G Y, et al. Multiobjective optimization for tapered circular tubes [J]. Thin-Walled Structures, 2011, 49(7): 855–863. DOI: 10.1016/j.tws.2011.02.010.
    [18] MARZBANRAD J, EBRAHIMI M R. Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks [J]. Thin-Walled Structures, 2011, 49(12): 1605–1615. DOI: 10.1016/j.tws.2011.08.009.
    [19] PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, part I: central delamination and triggering modelling [J]. Polymer Testing, 2010, 29(6): 729–741. DOI: 10.1016/j.polymertesting.2010.05.
    [20] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. DOI: 10.1016/j.tws.2021.108315.
    [21] WIERZBICKI T. Crushing analysis of metal honeycombs [J]. International Journal of Impact Engineering, 1983, 1(2): 157–174. DOI: 10.1016/0734-743x(83)90004-0.
    [22] 孔祥韶, 杨豹, 周沪, 等. 基于响应面法的纤维金属层合板抗弹性能优化设计 [J]. 爆炸与冲击, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.

    KONG X S, YANG B, ZHOU H, et al. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method [J]. Explosion and Shock Waves, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  101
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-06-17
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回