三元可燃混合气体爆炸极限实验及预测方法

宁也 何萌 祁畅 陈昇 闫兴清 喻健良

宁也, 何萌, 祁畅, 陈昇, 闫兴清, 喻健良. 三元可燃混合气体爆炸极限实验及预测方法[J]. 爆炸与冲击, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120
引用本文: 宁也, 何萌, 祁畅, 陈昇, 闫兴清, 喻健良. 三元可燃混合气体爆炸极限实验及预测方法[J]. 爆炸与冲击, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120
NING Ye, HE Meng, QI Chang, CHEN Sheng, YAN Xingqing, YU Jianliang. Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture[J]. Explosion And Shock Waves, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120
Citation: NING Ye, HE Meng, QI Chang, CHEN Sheng, YAN Xingqing, YU Jianliang. Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture[J]. Explosion And Shock Waves, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120

三元可燃混合气体爆炸极限实验及预测方法

doi: 10.11883/bzycj-2022-0120
基金项目: 国家自然科学基金(52174167);国家重点研发计划(2019YFC0810902);中国特种设备检测研究院二级学科建设基金(2021XKTD004)
详细信息
    作者简介:

    宁 也(1997- ),女,硕士研究生, ningye@mail.dlut.edu.cn

    通讯作者:

    陈 昇(1987- ),男,博士,高级工程师, chensheng_csei@163.com

  • 中图分类号: O389;X932

Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture

  • 摘要: 为了控制并预防原油的储存及输运过程中挥发气体造成的安全风险,在20 L球形爆炸容器内开展了由原油中挥发轻烃CH4、C3H8和C2H4构成的三元可燃混合气体的爆炸极限实验,提出并验证了基于Le Chatelier定律及Chemkin模拟的一维层流预混火焰模型预测三元可燃混合气体爆炸极限的方法。结果表明,三元可燃混合气体爆炸极限始终位于3种纯组分的爆炸极限内,随着某一纯组分增加呈现出接近其爆炸极限的趋势。3种纯组分对爆炸上限的影响要强于对爆炸下限的影响,其中C2H4对三元可燃混合气体爆炸上限影响尤为显著。两种预测方法的预测结果均与实验规律性一致。Le Chatelier定律预测混合气体爆炸下限较准确,但对爆炸上限的预测随着C2H4的增加偏差增大,修正后偏差明显减小;Chemkin预测爆炸下限虽存在一定偏差,但在实验偏差的允许范围内,可作为一种预测三元可燃混合气体爆炸下限的新方法。
  • 图  1  实验系统图

    Figure  1.  Schematic diagram of experimental system

    图  2  CH4爆炸上限的实验测定

    Figure  2.  Experimental upper explosion limits of CH4

    图  3  爆炸下限实验结果

    Figure  3.  Experimental results of the lower explosion limit

    图  4  爆炸下限Le Chatelier定律预测结果与实验结果对比

    Figure  4.  The lower explosion limits predicted by Le Chatelier’s law with experimental results

    图  5  爆炸下限Chemkin预测结果与实验结果对比

    Figure  5.  The lower explosion limits predicted by Chemkin with experimental results

    图  6  爆炸上限实验结果

    Figure  6.  Experimental results of the upper explosion limit

    图  7  爆炸上限Le Chatelier定律预测结果与实验结果对比

    Figure  7.  The upper explosion limits predicted by Le Chatelier’s law with experimental results

    图  8  爆炸下限预测结果与实验结果偏差

    Figure  8.  Deviation of the lower explosion limit between predictive results and experimental results

    图  9  Le Chatelier定律预测爆炸上限偏差

    Figure  9.  Deviation of predicting the upper explosion limit by Le Chatelier’s law

    图  10  爆炸上限修正前后偏差

    Figure  10.  Deviation of the upper explosion limit before and after correction

    表  1  气体爆炸极限

    Table  1.   The explosion limit of gases

    实验装置或来源CH4体积分数/%C3H8体积分数/%C2H4体积分数/%
    爆炸下限爆炸上限爆炸下限爆炸上限爆炸下限爆炸上限
    封闭圆柱体[19]5.2515.802.0910.092.8130.61
    MSDS[9]5.3015.002.10 9.502.7036.00
    12 L球形玻璃容器[11]4.9015.802.0310.002.7431.50
    50.8 mm管向上传播[20]5.3015.002.20 9.503.1032.00
    本文中20 L球形爆炸容器4.9015.902.1010.902.7035.90
    下载: 导出CSV
  • [1] QIAN H, ZHEN Y L, ZHE Z. Study on evaluation of explosion effects of gas injection wells [J]. Advanced Materials Research, 2014, 1051: 962–966. DOI: 10.4028/www.scientific.net/AMR.1051.962.
    [2] 王开伟. 原油码头油气回收系统分析与研究[D]. 杭州: 浙江大学, 2020: 1–6.

    WANG K W. Studies on the oil vapor recovery system of crude oil piers [D]. Hangzhou: Zhejiang University, 2020: 1-6.
    [3] CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5): 327–340. DOI: 10.1016/s0950-4230(99)00037-6.
    [4] 喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 17–23. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 17–23. DOI: 10.11883/bzycj-2018-0381.
    [5] VAN DEN SCHOOR F, VERPLAETSEN F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures [J]. Journal of Hazardous Materials, 2006, 128(1): 1–9. DOI: 10.1016/j.jhazmat.2005.06.043.
    [6] LI R Z, LIU Z C, HAN Y Q, et al. Extended adiabatic flame temperature method for lower flammability limits prediction of fuel-air-diluent mixture by nonstoichiometric equation and nitrogen equivalent coefficients [J]. Energy and Fuels, 2017, 31(1): 351–361. DOI: 10.1021/acs.energyfuels.6b02459.
    [7] DUPONT L, ACCORSI A. Explosion characteristics of synthesised biogas at various temperatures [J]. Journal of Hazardous Materials, 2006, 136(3): 520–525. DOI: 10.1016/j.jhazmat.2005.11.105.
    [8] LUO Z M, SU B, WANG T, et al. Effects of propane on the flammability limits and chemical kinetics of methane-air explosions [J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. DOI: 10.1080/00102202.2019.1625041.
    [9] 任常兴, 张琰, 赵文胜, 等. 混合气体爆炸性现场测试实验研究 [J]. 中国安全生产科学技术, 2019, 15(1): 20–25. DOI: 10.11731/j.issn.1673-193x.2019.01.003.

    REN C X, ZHANG Y, ZHAO W S, et al. Experimental study on field test for explosiveness of gas mixture [J]. Journal of Safety Science and Technology, 2019, 15(1): 20–25. DOI: 10.11731/j.issn.1673-193x.2019.01.003.
    [10] TONG M M, WU G Q, HAO J F, et al. Explosion limits for combustible gases [J]. Mining Science and Technology, 2009, 19(2): 182–184. DOI: 10.3969/j.issn.2095-2686.2009.02.009.
    [11] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. A study on flammability limits of fuel mixtures [J]. Journal of Hazardous Materials, 2008, 155(3): 440–448. DOI: 10.1016/j.jhazmat.2007.11.085.
    [12] MASHUGA C V, CROWL D A. Flammability zone prediction using calculated adiabatic flame temperatures [J]. Process Safety Progress, 1999, 18(3): 127–134. DOI: 10.1002/prs.680180303.
    [13] HU X, YU Q, SUN N, et al. Experimental study of flammability limits of oxy-methane mixture and calculation based on thermal theory [J]. International Journal of Hydrogen Energy, 2014, 39(17): 9527–9533. DOI: 10.1016/j.ijhydene.2014.03.202.
    [14] Determination of explosion limits of gases and vapours: BS EN 1839-2017 [S]. Brussels: European Committee for Standardisation, 2017.
    [15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 空气中可燃气体爆炸极限测定方法: GB/T 12474-2008 [S]. 2008.
    [16] 李刚, 李玉峰, 苑春苗. 高温和高压下CBM的爆炸极限 [J]. 东北大学学报(自然科学版), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.

    LI G, LI Y F, YUAN C M. Explosion limits of CBM at elevated pressure and temperature [J]. Journal of Northeastern University (Natural Science), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.
    [17] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.

    GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
    [18] TAKAHASHI A, URANO Y, TOKUHASHI K, et al. Effect of vessel size and shape on experimental flammability limits of gases [J]. Journal of Hazardous Materials, 2003, 105(1-3): 27–37. DOI: 10.1016/j.jhazmat.2003.07.002.
    [19] ZHAO F, ROGERS W J, MANNAN M S. Experimental measurement and numerical analysis of binary hydrocarbon mixture flammability limits [J]. Process Safety and Environmental Protection, 2009, 87(2): 94–104. DOI: 10.1016/j.psep.2008.06.003.
    [20] BERNARD L, GUENTHER V E. 燃气燃烧与瓦斯爆炸[M]. 3版. 王方, 译. 北京: 中国建筑工业出版社, 2010: 604.
    [21] MASCARENHAS V J, WEBER C N, WESTMORELAND P R. Estimating flammability limits through predicting non-adiabatic laminar flame [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4673–4681. DOI: 10.1016/j.proci.2020.06.026.
    [22] LUO Z M, LIANG H, WANG T, et al. Evaluating the effect of multiple flammable gases on the flammability limit of CH4: experimental study and theoretical calculation [J]. Process Safety and Environmental Protection, 2021, 146: 369–376. DOI: 10.1016/j.psep.2020.09.023.
    [23] JAIMES D J. Determination of lower flammability limits of mixtures of air and gaseous renewable fuels at elevated temperatures and pressures [D]. Irvine: University of California, 2017: 62-64.
    [24] WANG T, LUO Z M, WEN H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber [J]. Energy, 2021, 214. DOI: 10.1016/j.energy.2020.119042.
    [25] DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C-1 to C-8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1-6): 427–449. DOI: 10.1080/00102209808915781.
    [26] 罗振敏, 杨勇, 程方明, 等. N2和CO2惰化丙烯爆炸极限参数实验研究 [J]. 化工学报, 2020, 71(4): 1922–1928. DOI: 10.11949/0438-1157.20191167.

    LUO Z M, YANG Y, CHENG F M, et al. Experimental study on explosion limits parameters of propylene with dilution ofnitrogen and carbon dioxide [J]. CIESC Journal, 2020, 71(4): 1922–1928. DOI: 10.11949/0438-1157.20191167.
    [27] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits [J]. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  70
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回