驱动气体的密度梯度对弹丸发射速度的影响

王马法 李俊玲 柳森

王马法, 李俊玲, 柳森. 驱动气体的密度梯度对弹丸发射速度的影响[J]. 爆炸与冲击, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209
引用本文: 王马法, 李俊玲, 柳森. 驱动气体的密度梯度对弹丸发射速度的影响[J]. 爆炸与冲击, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209
WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209
Citation: WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209

驱动气体的密度梯度对弹丸发射速度的影响

doi: 10.11883/bzycj-2022-0209
基金项目: 国家自然科学基金(11802330)
详细信息
    作者简介:

    王马法(1986- ),男,博士,助理研究员,fujianwmf@163.com

    通讯作者:

    柳 森(1967- ),男,博士,研究员,hvi@cardc.cn

  • 中图分类号: O389;TG156

The influence of density gradient of driving gas on projectile launching velocity

  • 摘要: 为进一步提升轻气炮的发射能力,提出采用梯度气体替代单一氢气或氦气作为驱动气体的方法,通过对等直径发射器进行分析,建立了弹丸在梯度气体驱动下的加速运动模型,对比了氖-氦梯度气体驱动与单一氦气驱动的发射能力差异,分析了梯度气体参数对发射性能的影响。结果表明,与单一氦气驱动相比,氖-氦梯度气体驱动能够提升0.4~1.4 km/s的发射速度或降低0.2~0.9 GPa的发射过载;气体的密度和活塞的运动速度对发射速度和过载的影响最大,气体压力和多方气体指数的影响次之;梯度气体中,高密度气体应选择多方气体指数和密度较高的气体(如氖气、氩气等);梯度气体界面位置(高密度气体占比)对发射速度的影响不大,但高密度气体占比少有利于降低弹底压力。
  • 图  1  发射器内弹道示意图

    Figure  1.  Sketch of the constant cross-sectional area launch tube

    图  2  发射器作用过程的波系图

    Figure  2.  Wave structure of the constant cross-sectional area launch tube

    图  3  AUTODYN仿真计算模型

    Figure  3.  Finite elements simulation model

    图  4  不同初始压力下弹丸的加速过程对比

    Figure  4.  Velocity-time histories of launchers with different initial pressures

    图  5  不同界面位置下弹丸底部的压力对比

    Figure  5.  Pressure-time histories of launchers with different initial gas interfaces

    图  6  发射速度结果与单一氦气驱动对比(相同过载)

    Figure  6.  Muzzle velocities compared with the launchers with only helium driven gas (under the same pb,max)

    图  7  发射过载结果与单一氦气驱动对比(相同过载)

    Figure  7.  Maximum base pressures compared with the launchers with only helium driven gas (under the same ub)

    图  8  界面位置和初始填充压力对速度的影响

    Figure  8.  Muzzle velocities of launchers with different initial pressure and position of gas interface

    图  9  界面位置和初始填充压力对过载的影响

    Figure  9.  Maximum base pressures of launchers with different initial pressure and position of gas interface

    图  10  活塞运动距离与活塞速度对速度的影响

    Figure  10.  Muzzle velocities of launchers with different D and displacement of the piston

    图  11  活塞运动距离与活塞速度对过载的影响

    Figure  11.  Maximum base pressures of launchers with different D and displacement of the piston

    图  12  气体1参数对速度的影响

    Figure  12.  Muzzle velocities of launchers with different ρ10 and γ1

    图  13  气体1参数对过载的影响

    Figure  13.  Maximum base pressures of launchers with different ρ10 and γ1

    表  1  理论模型与数值计算结果

    Table  1.   Muzzle velocities obtained from simulation and analytical equation

    算例
    编号
    初始压力/
    MPa
    [L1/(L1+L2)]/
    %
    弹丸速度/(km·s−1 相对误差/
    %
    有限元式(14)
    11.00756.045.558.1
    21.72758.327.756.9
    32.50759.919.365.6
    41.72658.077.694.7
    51.72557.587.630.7
    下载: 导出CSV

    表  2  发射能力对各参数的敏感性分析

    Table  2.   The sensitivity of parameters in affecting launch performance

    参数参数变化范围发射速度提升/(km·s−1发射过载增加/GPa
    气体压力1~2 MPa2.54~3.080.98~2.06
    界面位置50%~90%0~0.460.47~1.55
    活塞运动距离40%~80%1.28~1.4~0
    活塞运动速度5~8 km/s4.38~4.48~2.85
    气体密度2.5ρ20~10ρ204.08~6.023.62~3.79
    多方气体指数1.2~1.67−0.14~1.80−1.24~−1.07
    下载: 导出CSV
  • [1] SWIFT H F. Light-gas gun technology: a historical perspective [M]//CHHABILDAS L C, DAVISON L, HORIE Y. High-Pressure Shock Compression of Solids Ⅷ. Berlin: Springer, 2005: 1–35.
    [2] LEXOW B, WICKERT M, THOMA K, et al. The extra-large light-gas gun of the fraunhofer EMI: applications for impact cratering research [J]. Meteoritics & Planetary Science, 2013, 48(1): 3–7. DOI: 10.1111/j.1945-5100.2012.01427.x.
    [3] HUNEAULT J, LOISEAU J, HIGGINS A J. Coupled lagrangian gasdynamic and structural hydrocode solvers for simulating an implosion-driven hypervelocity launcher [C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013: 1–21. DOI: 10.2514/6.2013-274.
    [4] HUNEAULT J, LOISEAU J, HILDEBRAND M, et al. Down-bore velocimetry of an explosively driven light-gas gun [J]. Procedia Engineering, 2015, 103: 230–236. DOI: 10.1016/j.proeng.2015.04.031.
    [5] HUNEAULT J. Development of an implosion-driven hypervelocity launcher for orbital debris impact simulation [D]. Montreal: McGill University, 2013: 3–10.
    [6] MORITOH T, KAWAI N, NAKAMURA K G, et al. Three-stage light-gas gun with a preheating stage [J]. Review of Scientific Instruments, 2004, 75(2): 537–540. DOI: 10.1063/1.1641155.
    [7] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.

    LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed-gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. DOI: 10.11883/1001-1455(2012)05-0483-07.
    [8] HILDEBRAND M. Concepts for increasing the projectile velocity of an implosion driven launcher [D]. Montreal: McGill University, 2016: 1–2.
    [9] CHRISTIANSEN E L. Meteoroid/debris shielding: NASA/TP-2003-210788 [R]. NASA, 2003.
    [10] 王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012.

    WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339–345. DOI: 10.11858/gywlxb.2014.03.012.
    [11] 王海福, 冯顺山, 刘有英. 空间碎片导论 [M]. 北京: 科学出版社, 2010: 1–5.
    [12] SEIGEL A E. The theory of high speed guns [R]. Paris: Advisory Group for Aerospace Research and Development, 1965.
    [13] PUTZAR R, SCHAEFER F. Concept for a new light-gas gun type hypervelocity accelerator [J]. International Journal of Impact Engineering, 2016, 88: 118–124. DOI: 10.1016/j.ijimpeng.2015.09.009.
    [14] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003: 439–445.
    [15] 北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用(上册) [M]. 北京: 国防工业出版社, 1979: 190–195.
    [16] Century Dynamics Inc. Autodyn user's manual: version 6.1 [M]. Houston: Century Dynamics Inc., 2005.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  100
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-11-01
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回