泡沫铝夹层结构抗冲击性能的近场动力学模拟分析

陈洋 汤杰 易果 吴亮 蒋刚

陈洋, 汤杰, 易果, 吴亮, 蒋刚. 泡沫铝夹层结构抗冲击性能的近场动力学模拟分析[J]. 爆炸与冲击, 2023, 43(3): 034202. doi: 10.11883/bzycj-2022-0110
引用本文: 陈洋, 汤杰, 易果, 吴亮, 蒋刚. 泡沫铝夹层结构抗冲击性能的近场动力学模拟分析[J]. 爆炸与冲击, 2023, 43(3): 034202. doi: 10.11883/bzycj-2022-0110
CHEN Yang, TANG Jie, YI Guo, WU Liang, JIANG Gang. Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics[J]. Explosion And Shock Waves, 2023, 43(3): 034202. doi: 10.11883/bzycj-2022-0110
Citation: CHEN Yang, TANG Jie, YI Guo, WU Liang, JIANG Gang. Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics[J]. Explosion And Shock Waves, 2023, 43(3): 034202. doi: 10.11883/bzycj-2022-0110

泡沫铝夹层结构抗冲击性能的近场动力学模拟分析

doi: 10.11883/bzycj-2022-0110
基金项目: 国家自然科学基金(51979205)
详细信息
    作者简介:

    陈 洋(1994- ),男,硕士,工程师,chenyangwust@sina.com

  • 中图分类号: O347.3

Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics

  • 摘要: 针对某光学舱所采用的泡沫铝夹层防护结构在破片冲击下的抗冲击性能问题,采用Monte-Carlo方法创建了泡沫铝结构的二维细观模型,在常规态型近场动力学理论中引入了Mises屈服准则和线性各向同性强化模型,建立了近场动力学塑性本构的数值计算框架。基于近场动力学计算程序模拟了低速冲击作用下泡沫铝夹层结构的塑性变形以及有机玻璃背板的裂纹扩展形态,分析了泡沫铝芯材孔隙率对该夹层结构抗冲击性能和损伤模式的影响规律。结果表明:泡沫铝夹层结构良好的塑性变形能力是其发挥缓冲与防护作用的主要因素,并且在一定范围内,泡沫铝芯材孔隙率越高,则夹层结构具有更好的抗冲击性能;当泡沫铝孔隙率从0.4提升到0.7时,泡沫铝对冲击物的动能吸收率从90%提高到99%;模拟结果与实验结果具有较好的一致性,验证了模拟结果的准确性和分析结论的有效性。通过数值模拟,预测了有机玻璃背板的裂纹扩展形态,发现提高泡沫铝的孔隙率能获得更好的防护效果。
  • 图  1  近场动力学质点之间的相互作用

    Figure  1.  Interaction between particles in peridynamics

    图  2  破片冲击泡沫铝夹层结构模型

    Figure  2.  Schematic diagram of an aluminum foam sandwich impacted by a fragment

    图  3  Monte-Carlo方法生成泡沫铝算法流程

    Figure  3.  Algorithm flow chart of the Monte-Carlo method to generate aluminum foam

    图  4  泡沫铝夹层结构的近场动力学离散模型

    Figure  4.  Discrete models of aluminum foam sandwiches for peridynamics

    图  5  泡沫铝夹层结构的变形过程

    Figure  5.  Deformation process of an aluminum foam sandwich

    图  6  泡沫铝夹层结构的塑性变形

    Figure  6.  Plastic deformation of an aluminum foam sandwich

    图  7  冲击物的速度曲线

    Figure  7.  Velocity curves of impactors

    图  8  冲击物的加速度曲线

    Figure  8.  Acceleration curves of impactors

    图  9  采用落锤实验获取冲击物加速度峰值

    Figure  9.  The peak impact acceleration of the impactor obtained by a drop-weight experiment

    图  10  不同孔隙率下的冲击加速度峰值

    Figure  10.  Peak impact accelerationsat different porosities

    图  11  有机玻璃背板的裂纹扩展

    Figure  11.  Crack propagation in PMMA plates

    表  1  材料参数

    Table  1.   Material parameters

    材料ρ/(kg∙m−3)E/GPaνσy/MPaEt/MPasc
    270069.50.33127586
    有机玻璃11903.60.40.047
    环氧树脂30.370.047
    下载: 导出CSV

    表  2  冲击过程中冲击物的主要运动参数

    Table  2.   Main motion parameters of impact object in the process of impact

    孔隙率反弹速度/(m∙s−1)残余动能/mJ加速度峰值/(km∙s−2)动能吸收率/%
    0.70.68 84799
    0.62.91155397
    0.54.72396694
    0.46.08658590
    下载: 导出CSV
  • [1] ZHANG J X, QIN Q H, WANG T J. Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores [J]. Acta Mechanica, 2013, 224(4): 759–775. DOI: 10.1007/s00707-012-0770-5.
    [2] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122: 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
    [3] ZHANG J X, YE Y, QIN Q H. On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading [J]. Thin-Walled Structures, 2019, 144: 106288. DOI: 10.1016/j.tws.2019.106288.
    [4] 郭亚周, 刘小川, 何思渊, 等. 不同弹形撞击下泡沫铝夹芯结构动力学性能研究 [J]. 兵工学报, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.

    GUO Y Z, LIU X C, HE S Y, et al. Research on dynamic properties of aluminum foam sandwich structure impacted by projectiles with different shapes [J]. Acta Armamentarii, 2019, 40(10): 2032–2041. DOI: 10.3969/j.issn.1000-1093.2019.10.008.
    [5] 张博一, 赵威, 王理, 等. 泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应 [J]. 爆炸与冲击, 2017, 37(4): 600–610. DOI: 10.11883/1001-1455(2017)04-0600-11.

    ZHANG B Y, ZHAO W, WANG L, et al. Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading [J]. Explosion and Shock Waves, 2017, 37(4): 600–610. DOI: 10.11883/1001-1455(2017)04-0600-11.
    [6] 邓旭辉, 李亚斌. 双层泡沫铝夹芯板抗冲击性能数值研究 [J]. 铁道科学与工程学报, 2019, 16(10): 2603–2611. DOI: 10.19713/j.cnki.43-1423/u.2019.10.029.

    DENG X H, LI Y B. Numerical study on impact resistance of double-layer foam aluminum sandwich panels [J]. Journal of Railway Science and Engineering, 2019, 16(10): 2603–2611. DOI: 10.19713/j.cnki.43-1423/u.2019.10.029.
    [7] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.

    ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
    [8] 夏志成, 张建亮, 周竞洋, 等. 泡沫铝夹芯板抗冲击性能分析 [J]. 工程力学, 2017, 34(10): 207–216. DOI: 10.6052/j.issn.1000-4750.2016.06.0494.

    XIA Z C, ZHANG J L, ZHOU J Y, et al. Analysis on impact resistance of aluminum foam sandwich panels [J]. Engineering Mechanics, 2017, 34(10): 207–216. DOI: 10.6052/j.issn.1000-4750.2016.06.0494.
    [9] CUI T N, ZHANG J H, LI K K, et al. Ballistic limit of sandwich plates with a metal foam core [J]. Journal of Applied Mechanics, 2022, 89(2): 021006. DOI: 10.1115/1.4052835.
    [10] 苏兴亚, 敬霖, 赵隆茂. 爆炸载荷下分层梯度泡沫铝夹芯板的失效模式与抗冲击性能 [J]. 爆炸与冲击, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.

    SU X Y, JING L, ZHAO L M. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Explosion and Shock Waves, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
    [11] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.

    WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
    [12] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
    [13] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005, 83(17/18): 1526–1535. DOI: 10.1016/j.compstruc.2004.11.026.
    [14] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
    [15] 杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟 [J]. 爆炸与冲击, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.

    YANG N N, ZHAO T Y, CHEN Z P, et al. Peridynamic simulation of damage of ship composite structure under fragments impact [J]. Explosion and Shock Waves, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.
    [16] 刘宁, 胡梦凡, 周飞. 基于键基近场动力学理论的单裂纹圆孔板冲击破坏研究 [J]. 工程力学, 2020, 37(12): 9–17. DOI: 10.6052/j.issn.1000-4750.2020.02.0076.

    LIU N, HU M F, ZHOU F. The impacted damage study of a single cleavage drilled compression specimen based on bond-based peridynamics [J]. Engineering Mechanics, 2020, 37(12): 9–17. DOI: 10.6052/j.issn.1000-4750.2020.02.0076.
    [17] 熊伟鹏, 王超, 傅江妍, 等. 冰球冲击试验的近场动力学方法数值模拟 [J]. 振动与冲击, 2020, 39(7): 148–155. DOI: 10.13465/j.cnki.jvs.2020.07.021.

    XIONG W P, WANG C, FU J Y, et al. Numerical simulation of ice sphere impact test by peridynamics method [J]. Journal of Vibration and Shock, 2020, 39(7): 148–155. DOI: 10.13465/j.cnki.jvs.2020.07.021.
    [18] MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening [J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 192–219. DOI: 10.1016/j.jmps.2015.09.016.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  137
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-05-08
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回