Volume 39 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
LU Xingyu, LI Jinping, CHEN Hong, YU Hongru. Experimental study on jet initiation for detonation driver[J]. Explosion And Shock Waves, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223
Citation: LU Xingyu, LI Jinping, CHEN Hong, YU Hongru. Experimental study on jet initiation for detonation driver[J]. Explosion And Shock Waves, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223

Experimental study on jet initiation for detonation driver

doi: 10.11883/bzycj-2018-0223
  • Received Date: 2018-06-20
  • Rev Recd Date: 2018-07-26
  • Available Online: 2019-05-25
  • Publish Date: 2019-06-01
  • The free-flow simulation range of the detonation driven shock tunnel is closely related to the detonation limit of the driving gas. The wider the detonation limit, the larger the simulation range. The driving gas is generally detonated through the igniter (ignition tube). Increasing the detonation capability of the ignition tube can broaden the detonation limit. In order to improve the ignition capacity of the igniter, the effects of three factors, the diameter of the ignition tube, the detonation sensitivity of the ignition gas, and the single/double igniter tube, were investigated experimentally. The velocity of the driven segment was measured under different initial conditions in the igniters. The conclusions are as follows. Firstly, improving the caliber of the ignition tube can significantly enhance the ability to initiate. Secondly, the ignition gas detonation sensitivity has an impact on the detonation capability: when the igniter is a reduced-diameter internal profile, the low-sensitivity gas has a stronger detonation capability; when the igniter pipe is of the same diameter internal profile, the result is reversed. Finally, if the synchronization of the jets can be ensured, the double igniters can improve the detonation ability. In order to ensure the synchronization, it is necessary to use a sensitive ignition gas like hydrogen oxygen mixtures of equivalent ratio.
  • loading
  • [1]
    俞鸿儒, 赵伟, 袁生学. 氢氧爆轰驱动激波风洞的性能 [J]. 气动实验与测量控制, 1993, 7(3): 38–42.

    YU Hongru, ZHAO Wei, YUAN Shengxue. Performance of shock tunnel with H2-O2 detonation driver [J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(3): 38–42.
    [2]
    OLIVIER H, JIANG Z, YU H R, et al. Detonation-driven shock tubes and tunnels [J]. Progress in Astronautics and Aeronautics, 2002, 198: 135–203.
    [3]
    姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究 [J]. 力学学报, 2012, 44(5): 824–831. DOI: 10.6052/0459-1879-12-160.

    JIANG Zonglin, LI Jinping, ZHAO Wei, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824–831. DOI: 10.6052/0459-1879-12-160.
    [4]
    俞鸿儒. 大幅度延长激波风洞试验时间 [J]. 中国科学: 物理学·力学·天文学, 2015, 45(9): 094701.

    YU Hongru. A big increase in shock tunnel test times [J]. Science China: Physics, Mechanics and Astronomy, 2015, 45(9): 094701.
    [5]
    MATSUI H. Characteristics of hydrogen explosions [J]. Journal of Safety Science and Technology, 2005, 1(6): 3–7.
    [6]
    INADA M, LEE J H, KNYSTAUTAS R. Photographic study of the direct initiation of detonation by a turbulent jet [J]. Progress in Astronautics and Aeronautics, 1993, 153: 253–253.
    [7]
    SHCHELKIN K L. Some methods for control of detonation [J]. Soviet Journal of Technical Physics, 1940, 10: 823–827.
    [8]
    SCHAUER F, STUTRUD J, BRADLEY R. Detonation initiation studies and performance results for pulsed detonation engine applications [C] // 39th Aerospace Sciences Meeting and Exhibit. 2001: 1129.
    [9]
    GRONIG H, OLIVIER H, HABERMANN M. Development of a detonation driver for a shock tunnel [J]. Review of High Pressure Science and Technology, 1998, 7: 879–884. doi: 10.4131/jshpreview.7.879
    [10]
    LEE S Y, CONRAD C, WATTS J, et al. Deflagration to detonation transition study using simultaneous Schlieren and OH PLIF images [C] // 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3217.
    [11]
    LINDSTEDT R P, MICHELS H J. Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures [J]. Combustion and Flame, 1989, 76(2): 169–181. doi: 10.1016/0010-2180(89)90065-5
    [12]
    SANTORO R J, CONRAD C, LEE S Y, et al. Fundamental multi-cycle studies of the performance of pulse detonation engines [C] // Proceedings of the ISABE 2001 Conference. 2001.
    [13]
    COOPER M, JACKSON S, AUSTIN J, et al. Direct experimental impulse measurements for detonations and deflagrations [J]. Journal of Propulsion and Power, 2002, 18(5): 1033–1041. doi: 10.2514/2.6052
    [14]
    AKBAR R, THIBAULT P, HARRIS P, et al. Detonation properties of unsensitized and sensitized JP-10 and Jet-A fuels in air for pulse detonation engines [C] // 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3592.
    [15]
    LI C, KAILASANATH K. Detonation initiation in pulse detonation engines [C] // 41st Aerospace Sciences Meeting and Exhibit. 2003: 1170.
    [16]
    张欣玉, 俞鸿儒, 赵伟, 等. 氢氧爆轰直接起始的射流点火方法研究 [J]. 气动实验与测量控制, 1996, 10(2): 63–68.

    ZHANG Xinyu, YU Hongru, ZHAO Wei, et al. Turbulent jet initiation of oxy-hydrogen direct detonation [J]. Aerodynamic Experiment and Measurement & Control, 1996, 10(2): 63–68.
    [17]
    林伟, 周进, 林志勇, 等. 热射流起爆过程的试验研究 [C] // 第四届高超声速科技学术会议会议日程及摘要集. 北京, 2011: 12.
    [18]
    林伟. 爆震燃烧热射流起爆机理研究 [D]. 长沙: 国防科学技术大学, 2010.
    [19]
    LEE J H S, HIGGINS A J. Comments on criteria for direct initiation of detonation [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3503–3521. doi: 10.1098/rsta.1999.0506
    [20]
    KNYSTAUTAS R, LEE J H, MOEN I, et al. Direct initiation of spherical detonation by a hot turbulent gas jet [C] // Symposium (International) on Combustion. Elsevier, 1979, 17(1): 1235−1245.
    [21]
    BEZMELNITSIN A V, DOROFEEV S B, YANKIN Y G. Direct comparison of detonation initiation by turbulent jet under confined and unconfined conditions [R]. Moscow, Russia: Russian Research Centre Kurchatov Institute, 1997.
    [22]
    MEDVEDEV S P, KHOMIK S V, OLIVIER H, et al. Jet-initiated hydrogen detonation phenomena [M] // Shock Waves. Berlin, Heidelberg: Springer, 2005: 807−812.
    [23]
    THOMAS G. Some observations on the initiation and onset of detonation [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1960): 715–739. DOI: 10.1098/rsta.2011.0368.
    [24]
    DOROFEEV S B, BEZMELNITSIN A V, SIDOROV V P, et al. Turbulent jet initiation of detonation in hydrogen-air mixtures [J]. Shock Waves, 1996, 6(2): 73–78. DOI: 10.1007/bf02515190.
    [25]
    CARNASCIALI F, LEE J H S, KNYSTAUTAS R, et al. Turbulent jet initiation of detonation [J]. Combustion and Flame, 1991, 84(1/2): 170–180. DOI: 10.1016/0010-2180(91)90046-e.
    [26]
    LIEBERMAN D, PARKIN K, SHEPHERD J. Detonation initiation by a hot turbulent jet for use in pulse detonation engines [C] // 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2002: 3909.
    [27]
    LEWIS B, von ELBE G. Combustion, flames and explosions of gases [M]. Amsterdam: Elsevier North-Holland Press, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (6393) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return