Volume 42 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
KANG Huang, WANG Shu, YAN Wenmin, CUI Hailin, GUO Xianghua, ZHANG Qingming. A study of incomplete similar models for tyre fragment impact on fuselage structures[J]. Explosion And Shock Waves, 2022, 42(7): 073201. doi: 10.11883/bzycj-2021-0359
Citation: KANG Huang, WANG Shu, YAN Wenmin, CUI Hailin, GUO Xianghua, ZHANG Qingming. A study of incomplete similar models for tyre fragment impact on fuselage structures[J]. Explosion And Shock Waves, 2022, 42(7): 073201. doi: 10.11883/bzycj-2021-0359

A study of incomplete similar models for tyre fragment impact on fuselage structures

doi: 10.11883/bzycj-2021-0359
  • Received Date: 2021-11-03
  • Rev Recd Date: 2021-11-30
  • Available Online: 2022-06-06
  • Publish Date: 2022-07-25
  • In order to reduce the cost for the impact test of the full-size airframe structures, an incomplete similar model was established by the similarity theory. Based on dimensional analysis, the correction relation for the Johnson-Cook linear strain-rate function was formulated. Due to the limitation of manufacturing technology, the effect of the incomplete similar model with distorted thickness on similarity behaviors should be taken into account, so an exponential function was adopted to establish the correction formula for the distorted thickness model. The validity of the simulation model was then verified by comparisons relevant to the deformation on the fuselage, the strain-time curves of target plates and the final deformation profile. In addition, the influences of fragment angle, material property, distortion thickness and light weight on the deformation behavior of the fuselage structure were analyzed. The following main results were obtained. (1) Under the impact velocity of 150 m/s, the most severe impact conditions appear at the impact angle of 90° and the fragment attitude of 180º; by considering various factors, the 3.5-mm-thickness titanium alloy plate is regarded as the best choice for fuselage structures, and it is used as a full-size prototype to verify the similar method. Besides, it’s worth noting that an unconventional phenomenon takes place at the impact angle of 30º, while a reasonable explanation is given. (2) The effect of strain rate on the impact of tire fragments on the fuselage structure is not notable, so the incomplete similar model is in good agreement with the prototype results. (3) The incomplete scaled-down model corrected by this method can effectively predict the deformation behavior of prototype fuselage subjected to the impact of tyre fragments. Although there is a certain deviation between the model and the prototype on the time scale, on the spatial dimensions, the incomplete scaled-down model can effectively correct the prediction error for the maximum center deformation caused by the distortion thickness, and the corrected maximum error is less than 5.1%, indicating that the method can effectively guide the design for airframe structures.
  • loading
  • [1]
    张建敏. 飞机轮胎爆破模式浅析 [J]. 力学季刊, 2014, 35(1): 139–148. DOI: 10.15959/j.cnki.0254-0053.2014.01.019.

    ZHANG J M. A brief study on damaging effects of Aeroplane tire and wheel failures [J]. Chinese Quarterly of Mechanics, 2014, 35(1): 139–148. DOI: 10.15959/j.cnki.0254-0053.2014.01.019.
    [2]
    MINES R A W, MCKOWN S, BIRCH R S. Impact of aircraft rubber tyre fragments on aluminium alloy plates: Ⅰ: experimental [J]. International Journal of Impact Engineering, 2007, 34(4): 627–646. DOI: 10.1016/j.ijimpeng.2006.02.005.
    [3]
    KARAGIOZOVA D, MINES R A W. Impact of aircraft rubber tyre fragments on aluminium alloy plates: Ⅱ: numerical simulation using LS-DYNA [J]. International Journal of Impact Engineering, 2007, 34(4): 647–667. DOI: 10.1016/j.ijimpeng.2006.02.004.
    [4]
    JIA S Q, WANG F S, YU L J, et al. Numerical study on the impact response of aircraft fuselage structures subjected to large-size tire fragment [J]. Science Progress, 2020, 103(1): 36850419877744. DOI: 10.1177/0036850419877744.
    [5]
    杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟 [J]. 爆炸与冲击, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.

    YANG N N, ZHAO T Y, CHEN Z P, et al. Peridynamic simulation of damage of ship composite structure under fragments impact [J]. Explosion and Shock Waves, 2020, 40(2): 023302. DOI: 10.11883/bzycj-2019-0019.
    [6]
    陈映秋, 杨永谦. 相似理论在分节驳结构模型试验中的应用 [J]. 中国造船, 1985(4): 56–64.

    CHEN Y Q, YANG Y Q. The application of similitude theory in integrated barge model test [J]. Shipbuilding of China, 1985(4): 56–64.
    [7]
    秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.

    QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
    [8]
    沈雁鸣, 陈坚强. 超高速碰撞相似律的数值模拟验证 [J]. 爆炸与冲击, 2011, 31(4): 343–348. DOI: 10.11883/1001-1455(2011)04-0343-06.

    SHEN Y M, CHEN J Q. Numerically simulating verification of the comparability rule on hypervelocity impact [J]. Explosion and Shock Waves, 2011, 31(4): 343–348. DOI: 10.11883/1001-1455(2011)04-0343-06.
    [9]
    杨亚东, 李向东, 王晓鸣, 等. 钢筋混凝土结构内爆炸相似模型试验研究 [J]. 南京理工大学学报(自然科学版), 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.

    YANG Y D, LI X D, WANG X M, et al. Experimental study on similarity model of reinforced concrete structure under internal explosion [J]. Journal of Nanjing University of Science and Technology, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.
    [10]
    OSHIRO R E, ALVES M. Predicting the behaviour of structures under impact loads using geometrically distorted scaled models [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(7): 1330–1349. DOI: 10.1016/j.jmps.2012.03.005.
    [11]
    KONG X S, LI X, ZHENG C, et al. Similarity considerations for scale-down model versus prototype on impact response of plates under blast loads [J]. International Journal of Impact Engineering, 2017, 101: 32–41. DOI: 10.1016/j.ijimpeng.2016.11.006.
    [12]
    KANG H, GUO X H, ZHANG Q M, et al. Predicting the behavior of armored plates under shallow-buried landmine explosion using incomplete scaling models [J]. International Journal of Impact Engineering, 2021, 156: 103970. DOI: 10.1016/j.ijimpeng.2021.103970.
    [13]
    MAZZARIOL L M, OSHIRO R E, ALVES M. A method to represent impacted structures using scaled models made of different materials [J]. International Journal of Impact Engineering, 2016, 90: 81–94. DOI: 10.1016/j.ijimpeng.2015.11.018.
    [14]
    徐坤. 典型结构响应相似律的应变率效应研究 [D]. 北京: 北京理工大学, 2016: 78. DOI: 10.26948/d.cnki.gbjlu.2016.000280.

    XU K. Research on scaling law of typical structure on strain rate effect [D]. Beijing, China: Beijing Institute of Technology, 2016: 78. DOI: 10.26948/d.cnki.gbjlu.2016.000280.
    [15]
    苏子星, 何继业. 基于Cowper-Symonds方程的相似理论修正方法 [J]. 爆炸与冲击, 2018, 38(3): 654–658. DOI: 10.11883/bzycj-2016-0308.

    SU Z X, HE J Y. Modified method for scaling law based on Cowper-Symonds equation [J]. Explosion and Shock Waves, 2018, 38(3): 654–658. DOI: 10.11883/bzycj-2016-0308.
    [16]
    刘源, 皮爱国, 杨荷, 等. 非等比例缩比侵彻/贯穿相似规律研究 [J]. 爆炸与冲击, 2020, 40(3): 033302. DOI: 10.11883/bzycj-2019-0086.

    LIU Y, PI A G, YANG H, et al. Study on similarity law of non-proportionally scaled penetration/perforation test [J]. Explosion and Shock Waves, 2020, 40(3): 033302. DOI: 10.11883/bzycj-2019-0086.
    [17]
    陈材, 石全, 尤志锋, 等. 圆柱形弹药空气中爆炸相似性规律 [J]. 爆炸与冲击, 2019, 39(9): 092202. DOI: 10.11883/bzycj-2018-0255.

    CHEN C, SHI Q, YOU Z F, et al. Similarity law of cylindrical ammunition explosions in air [J]. Explosion and Shock Waves, 2019, 39(9): 092202. DOI: 10.11883/bzycj-2018-0255.
    [18]
    Livermore Software Technology Corporation. LS-DYNA keyword user’s manual: Volume Ⅱ: material model [M]. Livermore, California, USA: Livermore Software Technology Corporation, 2018.
    [19]
    NEUBERGER A, PELES S, RITTEL D. Springback of circular clamped armor steel plates subjected to spherical air-blast loading [J]. International Journal of Impact Engineering, 2009, 36(1): 53–60. DOI: 10.1016/j.ijimpeng.2008.04.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article Metrics

    Article views (211) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return