Volume 42 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
SHI Yao, LIU Zhenpeng, PAN Guang, GAO Xingfu. Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance[J]. Explosion And Shock Waves, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426
Citation: SHI Yao, LIU Zhenpeng, PAN Guang, GAO Xingfu. Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance[J]. Explosion And Shock Waves, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426

Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance

doi: 10.11883/bzycj-2021-0426
  • Received Date: 2021-10-18
  • Rev Recd Date: 2022-08-10
  • Available Online: 2022-10-26
  • Publish Date: 2022-12-08
  • In order to solve the problems of structural damage and ballistic runaway caused by huge impact loads suffered by air-drop vehicles and rocket-assisted vehicles during high-speed water-entry, a slotted wrapping buffer head cap was proposed to guarantee the structural safety of the vehicles during water entry. Firstly, the structural composition and detailed parameters of the head cap were given, and a numerical model for the high-speed water-entry of the vehicles was established based on the arbitrary Lagrangian-Eulerian (ALE) algorithm. The Lagrangian viewpoint was used to solve the small deformation of the vehicle and the head cap, and the Eulerian viewpoint was used to capture the large deformation of the free surface such as water and air, thereby overcoming the problems that the Eulerian mesh was not accurate enough to solve the structural deformation and the numerical oscillation caused by mesh distortion in solving large deformation problems by the Lagrangian mesh. On this basis, the evolution processes of the cavity and flow field around the vehicle entering the water with the head cap at different angles were studied by numerical simulation, and the interaction process between the head cap and the water was given. Furthermore, the distribution of effective stress of the buffer was analyzed when it entering the water vertically and obliquely. Finally, the load reduction performances of the head cap when the vehicle entered the water at different velocities and angles were investigated. The results show that the cavities obtained by the simulation are basically consistent with the experimental images, and the change trends of impact acceleration are basically consistent with the experimental results. The relative error of the axial peak acceleration between the numerical simulation and experiment is 6.72%, and the relative error of the radial peak acceleration is 7.52%. The ratio of axial load reduction is 22.17% when the vehicle enters the water vertically with a head cap at 300 m/s. At the same time, the ratio of axial load reduction is 31.83% and the ratio of radial load reduction is 66.80% when the vehicle with a head cap enters the water at 100 m/s and 60°. So this research has a certain guiding role in the design of new load-reduction structure.
  • loading
  • [1]
    郑强, 杨日杰, 陈佳琪, 等. 直升机空投鱼雷的散布误差研究 [J]. 科学技术与工程, 2017, 17(15): 65–70. DOI: 10.3969/j.issn.1671-1815.2017.15.009.

    ZHENG Q, YANG R J, CHEN J Q, et al. Research on dispersion errors of helicopter’s airdrop torpedo [J]. Science Technology and Engineering, 2017, 17(15): 65–70. DOI: 10.3969/j.issn.1671-1815.2017.15.009.
    [2]
    温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究 [J]. 弹箭与制导学报, 2019, 39(5): 63–66,72. DOI: 10.15892/j.cnki.djzdxb.2019.05.015.

    WEN Z W, YANG Z D, WANG L J. Modeling of the air-dropped torpedo system and the simulation research of the air trajectory [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 63–66,72. DOI: 10.15892/j.cnki.djzdxb.2019.05.015.
    [3]
    潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, Yao E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [4]
    刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟 [J]. 工程热物理学报, 2019, 40(2): 300–305.

    LIU H P, YU F P, HAN B, et al. Numerical simulation study on influence of top jet in object water entering impact [J]. Journal of Engineering Thermophysics, 2019, 40(2): 300–305.
    [5]
    赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.

    ZHAO H R, SHI Y, PAN G. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
    [6]
    陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.

    CHEN Y, WU L, ZENG G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
    [7]
    严忠汉. 入水弹头缓冲器特性探讨 [J]. 水动力学研究与进展, 1987(1): 112–121. DOI: 10.16076/j.cnki.cjhd.1987.01.012.

    YAN Z H. An approach to the behavior of water-entry missile’s mitigator [J]. Advances in Hydrodynamics, 1987(1): 112–121. DOI: 10.16076/j.cnki.cjhd.1987.01.012.
    [8]
    王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析 [J]. 西北工业大学学报, 2009, 27(5): 707–712. DOI: 10.3969/j.issn.1000-2758.2009.05.023.

    WANG Y H, SHI X H, WANG P. Exploring analysis of dynamic cushioning properties of water-entry missile’s shock mitigator [J]. Journal of Northwestern Polytechnical University, 2009, 27(5): 707–712. DOI: 10.3969/j.issn.1000-2758.2009.05.023.
    [9]
    HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics, 1974, 14(3): 227–253. DOI: 10.1016/0021-9991(74)90051-5.
    [10]
    WANG H, ZHAO F, CHENG Y S, et al. Dynamic response analysis of light weight pyramidal sandwich plates subjected to water impact [J]. Polish Maritime Research, 2012, 19(4): 31–43. DOI: 10.2478/v10012-012-0038-y.
    [11]
    李建阳, 邢伟, 宋世鹏, 等. 舱体入水工况参数对冲击特性的影响分析 [J]. 宇航总体技术, 2019, 3(4): 49–55.

    LI J Y, XING W, SONG S P, et al. Analysis of effects of water entry condition parameters on impact characteristics of recovery module [J]. Astronautical Systems Engineering Technology, 2019, 3(4): 49–55.
    [12]
    胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.

    HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentrii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
    [13]
    颜彬, 钱韬, 马赛尔. 火箭助飞式器材高速入水冲击结构响应分析 [J]. 弹箭与制导学报, 2018, 38(5): 65–68,72. DOI: 10.15892/j.cnki.djzdxb.2018.05.016.

    YAN B, QIAN T, MA S E. Analysis for structure response to water entry impact for rocket-assisted equipment at high-speed [J]. Journal of Projectile, Rockets, Missiles and Guidance, 2018, 38(5): 65–68,72. DOI: 10.15892/j.cnki.djzdxb.2018.05.016.
    [14]
    WU S Y, SHAO Z Y, FENG S S, et al. Water-entry behavior of projectiles under the protection of polyurethane buffer head [J]. Ocean Engineering, 2020, 197: 106890. DOI: 10.1016/j.oceaneng.2019.106890.
    [15]
    LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
    [16]
    魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
    [17]
    钱立新, 刘飞, 屈明, 等. 鱼雷头罩入水破坏模式研究 [J]. 鱼雷技术, 2015, 23(4): 257–261.

    QIAN L X, LIU F, QU M, et al. Failure mode of torpedo nose cap in water-entry [J]. Torpedo Technology, 2015, 23(4): 257–261.
    [18]
    王泽鹏, 胡仁喜, 康士廷, 等. ANSYS 13.0 LS-DYNA非线性有限元分析实例[M]. 2版. 北京: 机械工业出版社, 2011: 348–349.
    [19]
    尚晓江, 苏建宇, 王化峰, 等. ANSYS LS-DYNA动力分析方法与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2008: 141.
    [20]
    潘光, 杜晓旭, 宋保维, 等. 鱼雷力学[M]. 西安: 陕西师范大学出版社, 2013: 10.
    [21]
    霍银磊, 张新昌. 发泡塑料缓冲设计中材料的密度选择 [J]. 塑料工业, 2007(5): 40–43. DOI: 10.3321/j.issn:1005-5770.2007.05.012.

    HUO Y L, ZHANG X C. Density choice of foamed plastics for cushion design [J]. China Plastics Industry, 2007(5): 40–43. DOI: 10.3321/j.issn:1005-5770.2007.05.012.
    [22]
    王泽鹏, 胡仁喜, 康士廷, 等. ANSYS 13.0 LS-DYNA非线性有限元分析实例[M]. 2版. 北京: 机械工业出版社, 2011: 63.
    [23]
    赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003: 167–168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views (331) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return