Volume 42 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Xianglong, ZHANG Zhiping, WANG Jianguo, LI Qiang, WANG Zichen. Influence of double empty hole spacing on section size of blasting chamber[J]. Explosion And Shock Waves, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471
Citation: LI Xianglong, ZHANG Zhiping, WANG Jianguo, LI Qiang, WANG Zichen. Influence of double empty hole spacing on section size of blasting chamber[J]. Explosion And Shock Waves, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471

Influence of double empty hole spacing on section size of blasting chamber

doi: 10.11883/bzycj-2021-0471
  • Received Date: 2021-11-11
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-05-05
  • Publish Date: 2022-11-18
  • In order to explore the influence of double empty hole spacing on the tunnel excavation blasting effect, the range of empty hole spacing is calculated according to the compensation space theory and the theoretical formula of hole deviation. A finite element numerical model of a roadway of Dahongshan Copper Mine is established based on the HJC constitutive model of concrete and multi-material ALE algorithm of LS-DYNA. By adding the *MAT_ADD_EROSION keyword, the damaged rock elements are observed, and the cross-section area of the cavity for cut blasting with large-diameter double empty holes of different spacing is calculated. The results show that when the hole spacing dv is 15, 25, 35, 45 and 55 cm, the cavity section area is 0.1641, 0.2116, 0.2436, 0.1740 and 0.0951 m2, respectively. When the hole spacing increased by 10 cm each from 15 cm to 55 cm, the cavity section area increased by 18.94% and 15.1% and decreased by 17.8% and 45.3%, respectively. Thus, with the increase of empty hole spacing, the section area increases first and then decreases. When dv = 35 cm, it reaches its maximum. This case was tested in the field. The width, height, and area of the cavity section measured by the No. 2 field test are 4.0%, 3.4%, and 4.98%, respectively, smaller than the simulation results. The error between multiple tests and simulation results is within 5%, indicating that the test results are in good agreement with the simulation results, which can provide data reference for the construction of a numerical method for predicting the cavity volume of underground tunnel cutting blasting.
  • loading
  • [1]
    SUN B, ZHANG Z Y, MENG J L, et al. Research on deep-hole cutting blasting efficiency in blind shafting with high in-situ Stress environment using the method of SPH [J]. Mathematics, 2021, 9(24): 3242. DOI: 10.3390/math9243242.
    [2]
    LI X L, LI Q, WANG J G, et al. Influence of hole arrangement on the section of cavity formed by cutting blast [J]. Geofluids, 2021, 2021: 9080560. DOI: 10.1155/2021/9080560.
    [3]
    ZHANG H, LI T C, DU Y T, et al. Theoretical and numerical investigation of deep-hole cut blasting based on cavity cutting and fragment throwing [J]. Tunnelling and Underground Space Technology, 2021, 111: 103854. DOI: 10.1016/j.tust.2021.103854.
    [4]
    SUI J B, REN F Y, CAO J L, et al. Numerical analysis for the caving characteristics of rock mass with inclined joints in caving mining [J]. Advances in Civil Engineering, 2021, 2021: 9917744. DOI: 10.1155/2021/9917744.
    [5]
    单仁亮, 黄宝龙, 高文蛟, 等. 岩巷掘进准直眼掏槽爆破新技术应用实例分析 [J]. 岩石力学与工程学报, 2011, 30(2): 224–232.

    SHAN R L, HUANG B L, GAO W J, et al. Case studies of new technology application of quasi-parallel cut blasting in rock roadway drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 224–232.
    [6]
    汪海波, 宗琦, 赵要才. 立井大直径中空孔直眼掏槽爆炸应力场数值模拟分析与应用 [J]. 岩石力学与工程学报, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.

    WANG H B, ZONG Q, ZHAO Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.
    [7]
    LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [8]
    钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟 [J]. 爆炸与冲击, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.

    ZHONG B B, LI H, ZHANG Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading [J]. Explosion and Shock Waves, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.
    [9]
    张召冉, 陈华义, 矫伟刚, 等. 含空孔直眼掏槽空孔效应及爆破参数研究 [J]. 煤炭学报, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.

    ZHANG Z R, CHEN H Y, JIAO W G, et al. Rock breaking mechanism and blasting parameters of straight-hole cutting with empty-hole [J]. Journal of China Coal Society, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.
    [10]
    GAO J, XIE S Z, ZHANG X T, et al. Study on the 2D optimization simulation of complex five-hole cutting blasting under different lateral pressure coefficients [J]. Complexity, 2020, 2020: 40639518. DOI: 10.1155/2020/4639518.
    [11]
    柴修伟, 李建国, 习本军, 等. 等体积空孔直眼掏槽槽腔形成过程及其分析 [J]. 爆破, 2020, 37(4): 48–52. DOI: 10.3963/j.issn.1001-487X.2020.04.008.

    CHAI X W, LI J G, XI B J, et al. Formation process and analysis of cavity by burn cut with equal volume empty hole [J]. Blasting, 2020, 37(4): 48–52. DOI: 10.3963/j.issn.1001-487X.2020.04.008.
    [12]
    李启月, 吴正宇, 黄武林. 直眼掏槽空孔效应的计算模型改进与分析 [J]. 采矿与安全工程学报, 2018, 35(5): 925–930. DOI: 10.13545/j.cnki.jmse.2018.05.007.

    LI Q Y, WU Z Y, HUANG W L. Improvement and analysis of calculation model for empty hole effect in parallel cut [J]. Journal of Mining & Safety Engineering, 2018, 35(5): 925–930. DOI: 10.13545/j.cnki.jmse.2018.05.007.
    [13]
    关振长, 朱凌枫, 俞伯林. 隧道掘进排孔爆破的精细化数值模拟 [J]. 振动与冲击, 2021, 40(11): 154–162. DOI: 10.13465/j.cnki.jvs.2021.11.022.

    GUAN Z C, ZHU L F, YU B L. Fine numerical simulation of row-hole blasting in tunnel excavation [J]. Journal of Vibration and Shock, 2021, 40(11): 154–162. DOI: 10.13465/j.cnki.jvs.2021.11.022.
    [14]
    MA J, LI X L, WANG J G, et al. Numerical simulation on selection of optimal delay time for precise delay blasting [J]. Shock and Vibration, 2021, 2021: 4593221. DOI: 10.1155/2021/4593221.
    [15]
    张学民, 周贤舜, 王立川, 等. 大断面隧道钻爆冲击波的衰减规律 [J]. 爆炸与冲击, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.

    ZHANG X M, ZHOU X S, WANG L C, et al. Attenuation of blast wave in a large-section tunnel [J]. Explosion and Shock Waves, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.
    [16]
    左进京, 杨仁树, 肖成龙, 等. 煤矿井巷中空孔掏槽爆破模型实验研究 [J]. 矿业科学学报, 2018, 3(4): 335–341. DOI: 10.19606/j.cnki.jmst.2018.04.003.

    ZUO J J, YANG R S, XIAO C L, et al. Model test of empty hole cut blasting in coal mine rock drivage [J]. Journal of Mining Science and Technology, 2018, 3(4): 335–341. DOI: 10.19606/j.cnki.jmst.2018.04.003.
    [17]
    冷振东, 范勇, 卢文波, 等. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析 [J]. 岩石力学与工程学报, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.

    LENG Z D, FAN Y, LU W B, et al. Explosion energy transmission and rock-breaking effect of in-hole dual initiation [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.
    [18]
    雷振, 黄永辉, 陈文梦, 等. 爆炸冲击荷载下扩腔体积和能耗随抵抗线的变化规律研究 [J]. 振动与冲击, 2021, 40(4): 66–71. DOI: 10.13465/j.cnki.jvs.2021.04.010.

    LEI Z, HUANG Y H, CHEN W M, et al. A study on the variation of cavity volume and energy dissipation with resistance line under blast impact load [J]. Journal of Vibration and Shock, 2021, 40(4): 66–71. DOI: 10.13465/j.cnki.jvs.2021.04.010.
    [19]
    李广涛, 乔登攀, 余贤斌, 等. 劈裂拉伸条件下大红山铜矿矿岩变形特性的试验研究 [J]. 安全与环境学报, 2017, 17(2): 463–467. DOI: 10.13637/j.issn.1009-6094.2017.02.013.

    LI G T, QIAO D P, YU X B, et al. Experimental investigation on the tensile deformation as a result of the brazilian test for the rocks of Dahongshan copper mine [J]. Journal of Safety and Environment, 2017, 17(2): 463–467. DOI: 10.13637/j.issn.1009-6094.2017.02.013.
    [20]
    WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy model [J]. Journal of Petroleum Science and Engineering, 2020, 193: 107375. DOI: 10.1016/j.petrol.2020.107375.
    [21]
    吴再海, 安龙, 齐兆军, 等. 基于LS-DYNA与PFC联合的岩体爆破数值模拟方法分析 [J]. 采矿与安全工程学报, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.

    WU Z H, AN L, QI Z J, et al. The numerical simulation method of rock mass blasting based on PFC combined with LS-DYNA [J]. Journal of Mining & Safety Engineering, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (680) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return