Volume 42 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Sheng, WANG Zheng, ZHANG Xulong, RONG Tenglong, ZHOU Rui, XU Ruize. Rock dynamic mechanical properties and dynamic stress balance of sandstone specimens with different sizes[J]. Explosion And Shock Waves, 2022, 42(10): 103102. doi: 10.11883/bzycj-2021-0447
Citation: ZHANG Sheng, WANG Zheng, ZHANG Xulong, RONG Tenglong, ZHOU Rui, XU Ruize. Rock dynamic mechanical properties and dynamic stress balance of sandstone specimens with different sizes[J]. Explosion And Shock Waves, 2022, 42(10): 103102. doi: 10.11883/bzycj-2021-0447

Rock dynamic mechanical properties and dynamic stress balance of sandstone specimens with different sizes

doi: 10.11883/bzycj-2021-0447
  • Received Date: 2021-10-28
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-03-29
  • Publish Date: 2022-10-31
  • Aiming at a clarification of the differences in dynamic mechanical properties of rock specimens with different sizes when characterized by a large diameter split Hopkinson pressure bar system, sandstone specimens with three different diameters (50, 75 and 100 mm) and five kinds of length-diameter ratios (0.4, 0.5, 0.6, 0.8 and 1.0) were employed for impact experiments on a pressure bar of diameter 100 mm. The variations of stress versus strain and strain rate versus time of specimens with different sizes were analyzed. The concept of a superposition coefficient for comparing waveform alignment overlap was then proposed, and together with the equilibrium factor it was used to study dynamic stress equilibrium. Thus, the recommended size range of specimens was determined for large-diameter split Hopkinson pressure bar tests. Also, a high-speed camera was used to observe the dynamic damage of the specimens. The results show that when the length-diameter ratio of specimen remains the same, the tested dynamic compressive strengths are close for the specimens of diameter 75 mm and 100 mm, but it is affected by more pronounced specimen length for the specimens of diameter 50 mm. With the increase of specimen’s diameter, the curve of strain rate versus time changes from single peak to double peak. The small-size specimen is more prone to axial splitting failure, and the large-size specimen produces larger tensile stress due to the superposition of internal stress waves, which is prone to the composite failure of spallation tension and axial splitting. When the specimen with a diameter of 75 mm and the length-diameter ratio of 0.3–0.4 is used, the coincidence degree after waveform alignment is better, sufficient stress balance time is achieved before initial failure, and the strain rate loading is more effective. It is helpful to reveal the size effect on the rock dynamic compression mechanical properties with different sizes of specimens, as it can provide a good reference for the specimen size selection in large-diameter SHPB tests.
  • loading
  • [1]
    蔡美峰. 岩石力学与工程 [M]. 北京: 科学出版社, 2002: 1–68.
    [2]
    方正峰. 基于SHPB试验的灰岩动态力学特性及损伤破坏过程研究 [D]. 贵阳: 贵州大学, 2017: 1–13.
    [3]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [4]
    GAMA B A, LOPATNIKOV S L, GILLESPIE JR J W. Hopkinson bar experimental technique: a critical review [J]. Applied Mechanics Reviews, 2004, 57(4): 223–250. DOI: 10.1115/1.1704626.
    [5]
    VAN MIER J G M, VAN VLIET M R A. Influence of microstructure of concrete on size/scale effects in tensile fracture [J]. Engineering Fracture Mechanics, 2003, 70(16): 2281–2306. DOI: 10.1016/S0013-7944(02)00222-9.
    [6]
    ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014 [M]. Cham, Switzerland: Springer, 2015.
    [7]
    PATERSON M S, WONG T F. Experimental rock deformation-the brittle field [M]. New York, USA: Springer-Verlag, 2005: 5–15.
    [8]
    洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究 [D]. 长沙: 中南大学, 2008: 91–118.

    HONG L. Size effect on strength and energy dissipation in fracture of rock under impact loads [D]. Changsha, Hunan, China: Central South University, 2008: 91–118.
    [9]
    李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 1–47.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing, China: Science Press, 2014: 1–47.
    [10]
    宫凤强, 李夕兵, 饶秋华, 等. 岩石SHPB试验中确定试样尺寸的参考方法 [J]. 振动与冲击, 2013, 32(17): 24–28. DOI: 10.13465/j.cnki.jvs.2013.17.005.

    GONG F Q, LI X B, RAO Q H, et al. Reference method for determining sample size in SHPB tests of rock materials [J]. Journal of Vibration and Shock, 2013, 32(17): 24–28. DOI: 10.13465/j.cnki.jvs.2013.17.005.
    [11]
    李地元, 肖鹏, 谢涛, 等. 动静态压缩下岩石试样的长径比效应研究 [J]. 实验力学, 2018, 33(1): 93–100. DOI: 10.7520/1001-4888-16-254.

    LI D Y, XIAO P, XIE T, et al. On the effect of length to diameter ratio of rock specimen subjected to dynamic and static compression [J]. Journal of Experimental Mechanics, 2018, 33(1): 93–100. DOI: 10.7520/1001-4888-16-254.
    [12]
    平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 3891–3897. DOI: 10.13722/j.cnki.jrme.2018.0646.

    PING Q, ZHANG H, SU H P. Study on dynamic compression mechanical properties of limestone with different lengths [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3891–3897. DOI: 10.13722/j.cnki.jrme.2018.0646.
    [13]
    杜晶. 不同长径比下岩石冲击动力学特性研究 [D]. 长沙: 中南大学, 2011: 39–57.

    DU J. Size effect on the dynamic mechanical properties under impact loads of rock [D]. Changsha, Hunan, China: Central South University, 2011: 39–57.
    [14]
    YUAN Q P, XIE G X, WANG L, et al. Experimental study on stress uniformity and deformation behavior of coals with different length-to-diameter ratios under dynamic compression [J]. Shock and Vibration, 2021, 2021: 6675200. DOI: 10.1155/2021/6675200.
    [15]
    ZHAO F Q, XU P B, WEN H M. Influence of specimen size in SHPB tests on concrete [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014101. DOI: 10.11858/gywlxb.20170532.
    [16]
    梁书锋, 吴帅峰, 李胜林, 等. 岩石材料SHPB实验试件尺寸确定的研究 [J]. 工程爆破, 2015, 21(5): 1–5. DOI: 10.3969/j.issn.1006-7051.2015.05.001.

    LIANG S F, WU S F, LI S L, et al. Study on the determination of specimen size in SHPB experiments of rock materials [J]. Engineering Blasting, 2015, 21(5): 1–5. DOI: 10.3969/j.issn.1006-7051.2015.05.001.
    [17]
    郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [18]
    HOPKINSON J. On the rupture of iron wire by a blow [C] // Proceedings of the Literary and Philosophical Society of Manchester. Manchester, UK, 1872: 40–45.
    [19]
    HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and and Engineering Sciences, 1914, 213(497): 437–456.
    [20]
    TAYLOR G I. The testing of materials at high rates of loading [J]. Journal of the ICE, 1946, 26(8): 486–519. DOI: 10.1680/ijoti.1946.13699.
    [21]
    DAVIES R M. A critical study of the Hopkinson pressure bar [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 240(821): 375–457. DOI: 10.1098/rsta.1948.0001.
    [22]
    LINDHOLM U S. Some experiments with the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5): 317–325. DOI: 10.1016/0022-5096(64)90028-6.
    [23]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
    [24]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 5–64.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing, China: National Defense Industry Press, 2005: 5–64.
    [25]
    刘金旭. D-Wave软件说明书 [Z]. 北京: 北京理工大学, 2012.
    [26]
    刘德顺, 李夕兵. 冲击机械系统动力学 [M]. 北京: 科学出版社, 1999: 42.

    LIU D S, LI X B. Mechanical impact dynamics [M]. Beijing, China: Science Press, 1999: 42.
    [27]
    任亮, 何瑜, 王凯. 基于整形器的UHPC材料SHPB试验数值模拟与分析 [J]. 振动与冲击, 2019, 38(21): 44–52. DOI: 10.13465/j.cnki.jvs.2019.21.007.

    REN L, HE Y, WANG K. Numerical simulation and analysis of SHPB test for UHPC material based on shaper [J]. Journal of Vibration and Shock, 2019, 38(21): 44–52. DOI: 10.13465/j.cnki.jvs.2019.21.007.
    [28]
    陈刚, 张青平, 黄西成. 基于软材料的SHPB波形整形技术 [J]. 中国科学: 技术科学, 2016, 46(4): 393–399. DOI: 10.1360/N092015-00368.

    CHEN G, ZHANG Q P, HUANG X C. Pulse shaping with soft material for SHPB [J]. Scientia Sinica: Technologica, 2016, 46(4): 393–399. DOI: 10.1360/N092015-00368.
    [29]
    FORRESTAL M J, WARREN T L. A conical striker bar to obtain constant true strain rate for Kolsky bar experiments [J]. Journal of Dynamic Behavior of Materials, 2021, 7(1): 161–164. DOI: 10.1007/s40870-020-00269-1.
    [30]
    GAO M Z, XIE J, GAO Y N, et al. Mechanical behavior of coal under different mining rates: a case study from laboratory experiments to field testing [J]. International Journal of Mining Science and Technology, 2021, 31(5): 825–841. DOI: 10.1016/J.IJMST.2021.06.007.
    [31]
    张盛, 喻炳鑫, 王峰, 等. 不同尺寸含裂缝岩样动态破坏特征的实验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1045–1054. DOI: 10.13545/j.cnki.jmse.2021.0131.

    ZHANG S, YU B X, WANG F, et al. Experimental study on dynamic fracture characteristics of different sizes of rock specimens with a crack [J]. Journal of Mining & Safety Engineering, 2021, 38(5): 1045–1054. DOI: 10.13545/j.cnki.jmse.2021.0131.
    [32]
    宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.

    SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.
    [33]
    毛勇建, 李玉龙. SHPB试验中试件的轴向应力均匀性 [J]. 爆炸与冲击, 2008, 28(5): 448–454. DOI: 10.11883/1001-1455(2008)05-0448-07.

    MAO Y J, LI Y L. Axial stress uniformity in specimens of SHPB tests [J]. Explosion and Shock Waves, 2008, 28(5): 448–454. DOI: 10.11883/1001-1455(2008)05-0448-07.
    [34]
    周风华, 王礼立, 胡时胜. 高聚物SHPB试验中试件早期应力不均匀性的影响 [J]. 实验力学, 1992, 7(1): 23–29.

    ZHOU F H, WANG L L, HU S S. On the effect of stress nonuniformness in polymer specimen of SHPB tests [J]. Journal of Experimental Mechanics, 1992, 7(1): 23–29.
    [35]
    朱珏, 胡时胜, 王礼立. SHPB试验中粘弹性材料的应力均匀性分析 [J]. 爆炸与冲击, 2006, 26(4): 315–322. DOI: 10.11883/1001-1455(2006)04-0315-08.

    ZHU J, HU S S, WANG L L. Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests [J]. Explosion and Shock Waves, 2006, 26(4): 315–322. DOI: 10.11883/1001-1455(2006)04-0315-08.
    [36]
    杜晶, 李夕兵, 宫凤强, 等. 岩石冲击实验碎屑分类及其分形特征 [J]. 矿业研究与开发, 2010, 30(5): 20–22, 84. DOI: 10.13827/j.cnki.kyyk.2010.05.006.

    DU J, LI X B, GONG F Q, et al. Classification and Fractal Characteristics of the fragments from impacting experiment of rock [J]. Mining Research and Development, 2010, 30(5): 20–22, 84. DOI: 10.13827/j.cnki.kyyk.2010.05.006.
    [37]
    杜忠华, 高光发, 李伟兵. 撞击动力学 [M]. 北京: 北京理工大学出版社, 2017: 162–170.

    DU Z H, GAO F G, LI W B. Impact dynamics [M]. Beijing, China: Beijing Institute of Technology Press, 2017: 162–170.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (509) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return