Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
WANG Zhi, CHANG Lijun, HUANG Xingyuan, CAI Zhihua. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments[J]. Explosion And Shock Waves, 2023, 43(6): 063202. doi: 10.11883/bzycj-2022-0515
Citation: WANG Zhi, CHANG Lijun, HUANG Xingyuan, CAI Zhihua. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments[J]. Explosion And Shock Waves, 2023, 43(6): 063202. doi: 10.11883/bzycj-2022-0515

Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments

doi: 10.11883/bzycj-2022-0515
  • Received Date: 2022-11-14
  • Rev Recd Date: 2023-02-22
  • Available Online: 2023-03-23
  • Publish Date: 2023-06-05
  • In the complex battlefield environment, soldiers will not only face the impact damage of bullets and fragments, but also be subjected to the combined effect of shock wave and bullets caused by explosion. In order to enhance the performance of existing protective gears and better protect the safety of soldiers, a human chest composite protective structure composed of polyurea, Kevlar and foam was designed. Based on the LS-DYNA software platform, a finite element model of the chest composite protective structure is established, and the validity of the model is verified by experimental data drawn from open literature. On this basis, air domain, improvised explosive device and transmissive pressure test platform models are established, and the formation of blast shock wave and fragments and their interaction with the protective structure are simulated by the arbitrary Lagrange-Euler method. The transmittance pressures of different protective structures are compared, while the effects of the arrangement types of protective structures and the thickness on the chest protection are analyzed. The results show that under the action of blast shock wave alone, all three protective structures can effectively reduce the overpressure of blast shock wave; different arrangement types of protective structures have less influence on the anti-blast effect, among which polyurea-Kevlar-foam arrangement structure has better anti-blast effect, and Kevlar-polyurea-foam structure has poor anti-blast effect, and the difference between the two pressure peaks is 2.42%. Under the combined action of blast shock wave and fragments, the peak transmissive pressure of all three protective structures is larger than that of the blast alone; the polyurea-Kevlar-foam arrangement structure has a better protective effect, and the peak transmissive pressure is reduced by 18.49% compared with that of the polyurea-Kevlar-polyurea-foam structure, which has the largest peak transmissive pressure. Appropriate increase in structure thickness can reduce the damage to human chest caused by the combined action of blast shock waves and fragments, but continued increase in thickness has limited gain in protection performance.
  • loading
  • [1]
    CERNAK I, SAVIC J, IGNJATOVIC D, et al. Blast injury from explosive munitions [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1999, 47(1): 96–103. DOI: 10.1097/00005373-199907000-00021.
    [2]
    OWENS B D, KRAGH JR J F, WENKE J C, et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
    [3]
    NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008.
    [4]
    LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. DOI: 10.1016/j.ijimpeng.2004.04.012.
    [5]
    KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009.
    [6]
    CHU D Y, WANG Y G, YANG S L, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate [J]. Defence Technology, 2023, 19: 35–51. DOI: 10.1016/j.dt.2021.11.010.
    [7]
    崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟 [J]. 爆破器材, 2019, 48(1): 52–57. DOI: 10.3969/j.issn.1001-8352.2019.01.010.

    CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN [J]. Explosive Materials, 2019, 48(1): 52–57. DOI: 10.3969/j.issn.1001-8352.2019.01.010.
    [8]
    彭佳, 刘春美, 张会锁, 等. 柔性防护结构对爆炸冲击波衰减作用数值模拟 [J]. 科学技术与工程, 2014, 14(31): 220–224, 230. DOI: 10.3969/j.issn.1671-1815.2014.31.041.

    PENG J, LIU C M, ZHANG H S, et al. Numerical simulation on flexible protection structure attenuation to blast wave [J]. Science Technology and Engineering, 2014, 14(31): 220–224, 230. DOI: 10.3969/j.issn.1671-1815.2014.31.041.
    [9]
    袁天, 孔祥韶, 吴卫国. 钢板/凯夫拉层合结构爆炸响应数值分析 [J]. 中国舰船研究, 2016, 11(5): 84–90. DOI: 10.3969/j.issn.1673-3185.2016.05.013.

    YUAN T, KONG X S, WU W G. Numerical simulation of steel/Kevlar laminated structures under explosive load [J]. Chinese Journal of Ship Research, 2016, 11(5): 84–90. DOI: 10.3969/j.issn.1673-3185.2016.05.013.
    [10]
    徐斌, 王成, 臧立伟, 等. 爆炸冲击波与防弹衣相互作用的数值模拟 [J]. 北京理工大学学报, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.

    XU B, WANG C, ZANG L W, et al. Numerical simulation on the impact of explosion shock wave on bullet-proof vest [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.
    [11]
    邵先锋, 赵捍东, 朱福林, 等. 一种新型柔性复合防护结构的数值模拟 [J]. 兵器装备工程学报, 2017, 38(6): 142–145. DOI: 10.11809/scbgxb2017.06.031.

    SHAO X F, ZHAO H D, ZHU F L, et al. Numerical simulation of a new flexible compound protective structure [J]. Journal of Ordnance Equipment Engineering, 2017, 38(6): 142–145. DOI: 10.11809/scbgxb2017.06.031.
    [12]
    苗成, 钟涛, 李兵伟, 等. 陶瓷复合装甲抗爆轰性能试验研究 [J]. 兵器装备工程学报, 2020, 41(S1): 40–43. DOI: 10.11809/bqzbgcxb2020.S1.010.

    MIAO C, ZHONG T, LI B W, et al. Study on anti-detonation performance of ceramic composite armor [J]. Journal of Ordnance Equipment Engineering, 2020, 41(S1): 40–43. DOI: 10.11809/bqzbgcxb2020.S1.010.
    [13]
    王燕, 李梦群, 杨淼慧, 等. 复合防护结构抗破片侵彻性能的研究 [J]. 火工品, 2022(4): 16–20. DOI: 10.3969/j.issn.1003-1480.2022.04.004.

    WANG Y, LI M Q, YANG M H, et al. Study on anti-fragment penetration performance of composite protective structure [J]. Initiators & Pyrotechnics, 2022(4): 16–20. DOI: 10.3969/j.issn.1003-1480.2022.04.004.
    [14]
    张玉玉, 王树山, 任凯, 等. 小尺寸钨块对单兵防护装备侵彻的弹道极限研究 [J]. 兵器装备工程学报, 2020, 41(2): 60–62, 110. DOI: 10.11809/bqzbgcxb2020.02.013.

    ZHANG Y Y, WANG S S, REN K, et al. Research on ballistic limit of individual soldier equipment with small size tungsten blocks [J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 60–62, 110. DOI: 10.11809/bqzbgcxb2020.02.013.
    [15]
    HAN R G, QU Y J, YAN W M, et al. Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets [J]. Defence Technology, 2020, 16(4): 900–909. DOI: 10.1016/j.dt.2019.11.010.
    [16]
    唐昌州, 智小琦, 郝春杰, 等. 防弹衣抗小钨球侵彻性能的数值模拟 [J]. 高压物理学报, 2021, 35(3): 034203. DOI: 10.11858/gywlxb.20210715.

    TANG C Z, ZHI X Q, HAO C J, et al. Numerical simulation of anti-penetration performance of body armor against small tungsten sphere [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034203. DOI: 10.11858/gywlxb.20210715.
    [17]
    李茂, 侯海量, 朱锡, 等. 结构间隙对芳纶纤维增强复合装甲结构抗侵彻性能的影响 [J]. 兵工学报, 2017, 38(9): 1797–1805. DOI: 10.3969/j.issn.1000-1093.2017.09.017.

    LI M, HOU H L, ZHU X, et al. Influence of structural interspace on anti-penetration performance of para-aramid fiber-reinforced composite armor system [J]. Acta Armamentarii, 2017, 38(9): 1797–1805. DOI: 10.3969/j.issn.1000-1093.2017.09.017.
    [18]
    YANG F Y, LI Z J, LIU Z L, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures [J]. International Journal of Impact Engineering, 2021, 155: 103904. DOI: 10.1016/j.ijimpeng.2021.103904.
    [19]
    胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究 [J]. 兵器材料科学与工程, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.

    HU N M, CHEN C H, HOU H L, et al. Simulation on damage characteristic of composite laminates under high-velocity projectile impact [J]. Ordnance Material Science and Engineering, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.
    [20]
    JIANG Y X, ZHANG B Y, WEI J S, et al. Study on the dynamic response of polyurea coated steel tank subjected to blast loadings [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104234. DOI: 10.1016/j.jlp.2020.104234.
    [21]
    郑秋杰, 郭迎福, 蔡志华, 等. 步枪弹高速冲击下防弹头盔功能梯度泡沫内衬的防护性能 [J]. 兵工学报, 2021, 42(6): 1275–1282. DOI: 10.3969/j.issn.1000-1093.2021.06.018.

    ZHENG Q J, GUO Y F, CAI Z H, et al. Protective performance of functionally graded foam lining subjected to high-speed rifle bullet impact [J]. Acta Armamentarii, 2021, 42(6): 1275–1282. DOI: 10.3969/j.issn.1000-1093.2021.06.018.
    [22]
    WU J, LIU Z C, YU J, et al. Experimental and numerical investigation of normal reinforced concrete panel strengthened with polyurea under near-field explosion [J]. Journal of Building Engineering, 2022, 46: 103763. DOI: 10.1016/j.jobe.2021.103763.
    [23]
    LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. DOI: 10.1016/j.compositesa.2015.09.025.
    [24]
    杨光, 张博一, 韦建树, 等. 聚脲喷涂钢制罐体抗爆性能试验及数值模拟研究 [J]. 土木与环境工程学报, 2023, 45(1): 44–53. DOI: 10.11835/j.issn.2096-6717.2021.168.

    YANG G, ZHANG B Y, WEI J S, et al. Experimental and numerical simulation study on blast-resistance capacity of polyurea sprayed steel tank [J]. Journal of Civil and Environmental Engineering, 2023, 45(1): 44–53. DOI: 10.11835/j.issn.2096-6717.2021.168.
    [25]
    GUO G D, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157: 104000. DOI: 10.1016/j.ijimpeng.2021.104000.
    [26]
    BRESCIANI L M, MANES A, RUGGIERO A, et al. Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: macro-homogeneous and meso-heterogeneous approaches [J]. Composites Part B: Engineering, 2016, 88: 114–130. DOI: 10.1016/j.compositesb.2015.10.039.
    [27]
    朱学亮. 聚脲金属复合结构抗冲击防护性能研究 [D]. 北京: 北京理工大学, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000315.

    ZHU X L. Study on impact and blast resistance of polyurea metal composite structure [D]. Beijing: Beijing Institute of Technology, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000315.
    [28]
    SADOVSKYI M A. Mechanical action of air shock waves of explosion, based on experimental data [M]. Moscow: Izd Akad Nauk SSSR, 1952.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (430) PDF downloads(257) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return