Volume 43 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
YOU Yuanyuan, CUI Zhengrong, ZHANG Xiliang, YOU Shuai, KANG Yiqiang, XIAO Chenglong, LU Feixiang. Optimum seam forming angle of bilinear shaped charge in engineering blasting[J]. Explosion And Shock Waves, 2023, 43(2): 025201. doi: 10.11883/bzycj-2022-0081
Citation: YOU Yuanyuan, CUI Zhengrong, ZHANG Xiliang, YOU Shuai, KANG Yiqiang, XIAO Chenglong, LU Feixiang. Optimum seam forming angle of bilinear shaped charge in engineering blasting[J]. Explosion And Shock Waves, 2023, 43(2): 025201. doi: 10.11883/bzycj-2022-0081

Optimum seam forming angle of bilinear shaped charge in engineering blasting

doi: 10.11883/bzycj-2022-0081
  • Received Date: 2022-03-04
  • Rev Recd Date: 2022-05-30
  • Available Online: 2022-06-01
  • Publish Date: 2023-02-25
  • To explore the influences of the opening angle of bilinear shaped charge on the effective utilization rate and energy gathering effect, the boundary equation of effective shaped charge was deduced through the theory of instantaneous detonation hypothesis. The effective utilization ratio of the shaped charge structure blasting with 60°, 65°, 70°, 75°, and 80° shaped charge angles was analyzed using the visual implicit functions of SymPy package based on Python language. Through the physical model tests of single-hole Plexiglas and double-hole cement mortar, the crack formation law of pre-cracked holes with different energy-gathering opening angles was studied. Using the LS-DYNA numerical simulation software, five numerical models with energy-gathered opening angles of 60°, 65°, 70°, 75°, and 80° were established to reveal the penetration process of the bilinear energy-gathered structure charge jet and the stress evolution law of the rock unit on the blast-hole wall with different energy-gathered opening angles. The research results show that the effective utilization ratio of the shaped explosives is the highest when the energy-gathered opening angle is 75°. The pre-split hole formation effect when the opening angle of the energy-concentrating groove of the shaped charge is 75° is better than that when the opening angle is 60°, and the stress concentration effect and penetration depth along the direction of the energy-concentrating groove are the best, and the rock unit on the blast-hole wall reaches the peak stress first. The pre-split blasting field tests of two lithologies of Slate and Dolomite were carried out for the double-line shaped energy-concentrated structure charge with the energy-gathering opening angle of 75°. In two different lithologies of Slate and Dolomite, under the condition that hole spacing was increased by 20%, the double-linear pre-split blasting effect of the shaped energy is better than that of the conventional pre-split blasting.
  • loading
  • [1]
    李胜林, 梁书锋, 李晨, 等. 露天矿山深孔台阶爆破技术的现状与发展趋势 [J]. 矿业科学学报, 2021, 6(5): 598–605. DOI: 10.19606/j.cnki.jmst.2021.05.009.

    LI S L, LIANG S F, LI C, et al. Current status and development trend of deep hole bench blasting technology in open-pit mines [J]. Journal of Mining Science and Technology, 2021, 6(5): 598–605. DOI: 10.19606/j.cnki.jmst.2021.05.009.
    [2]
    RUSTAN A. Linear shaped charges for contour blasting or stone cutting: full scale tests at Gårdlidenberget, Storsund [M]. Luleå Tekniska Universitet, 1983.
    [3]
    罗勇, 沈兆武. 聚能药包在岩石定向断裂爆破中的应用研究 [J]. 爆炸与冲击, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.

    LUO Y, SHEN Z W. Application study on directional fracture controlled blasting with shaped charge in rock [J]. Explosion and Shock Waves, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.
    [4]
    刘文革, 题正义, 黄文尧. 轴对称聚能药管及其聚能效应 [J]. 辽宁工程技术大学学报, 2006, 25(S2): 126–128.

    LIU W G, TI Z Y, HUANG W Y. New axisymmetric amplitude transformer of explosive and its mohaupt effect [J]. Journal of Liaoning Technical University, 2006, 25(S2): 126–128.
    [5]
    杨仁树, 佟强, 杨国梁. 聚能管装药预裂爆破模拟试验研究 [J]. 中国矿业大学学报, 2010, 39(5): 631–635.

    YANG R S, TONG Q, YANG G L. Pre-splitting blasting with binding energy tube charges: simulations and experimental research [J]. Journal of China University of Mining & Technology, 2010, 39(5): 631–635.
    [6]
    宋俊生, 王雁冰, 高祥涛, 等. 定向断裂控制爆破机理及应用 [J]. 矿业科学学报, 2016, 1(1): 16–28. DOI: 10.19606/j.cnki.jmst.2016.01.004.

    SONG J S, WANG Y B, GAO X T, et al. The mechanism of directional fracture controlled blasting and its application [J]. Journal of Mining Science and Technology, 2016, 1(1): 16–28. DOI: 10.19606/j.cnki.jmst.2016.01.004.
    [7]
    梁洪达, 郭鹏飞, 孙鼎杰, 等. 不同聚能爆破模式应力波传播及裂纹扩展规律研究 [J]. 振动与冲击, 2020, 39(4): 157–164,184. DOI: 10.13465/j.cnki.jvs.2020.04.020.

    LIANG H D, GUO P F, SUN D J, et al. A study on crack propagation and stress wave propagation in different blasting modes of shaped energy blasting [J]. Journal of Vibration and Shock, 2020, 39(4): 157–164,184. DOI: 10.13465/j.cnki.jvs.2020.04.020.
    [8]
    赵建平, 戴东波, 张振洋, 等. 线性聚能爆破时影响岩体损伤因素的灰色关联分析 [J]. 爆破, 2018, 35(4): 14–19. DOI: 10.3963/j.issn.1001-487X.2018.04.003.

    ZHAO J P, DAI D B, ZHANG Z Y, et al. Grey relational analysis of influencing factors of rock mass damage during linear shaped charge blasting [J]. Blasting, 2018, 35(4): 14–19. DOI: 10.3963/j.issn.1001-487X.2018.04.003.
    [9]
    吴波, 韦汉, 徐世祥, 等. 基于SPH的椭圆双极线性聚能药包控制爆破数值模拟研究 [J]. 煤炭科学技术, 2022, 50(5): 135–142. DOI: 10.13199/j.cnki.cst.2019-1261.

    WU B, WEI H, XU S X, et al. Numerical analysis of controlled blasting of elliptic bipolar linear shaped charge based on SPH [J]. Coal science and Technology, 2022, 50(5): 135–142. DOI: 10.13199/j.cnki.cst.2019-1261.
    [10]
    黄风雷, 张雷雷, 段卓平. 大锥角药型罩聚能装药侵彻混凝土实验研究 [J]. 爆炸与冲击, 2008, 28(1): 17–22. DOI: 10.11883/1001-1455(2008)01-0017-06.

    HUANG F L, ZHANG L L, DUAN Z P. Shaped charge with large cone angle for concrete target [J]. Explosion and Shock Waves, 2008, 28(1): 17–22. DOI: 10.11883/1001-1455(2008)01-0017-06.
    [11]
    薛宪彬. 对称双线型聚能爆破技术数值模拟研究及应用 [J]. 工程爆破, 2017, 23(6): 26–29, 38. DOI: 10.3969/j.issn.1006-7051.2017.06.006.

    XUE X B. Numerical simulation analysis and application of symmetric bilinear shaped charge blasting technology [J]. Engineering Blasting, 2017, 23(6): 26–29, 38. DOI: 10.3969/j.issn.1006-7051.2017.06.006.
    [12]
    秦健飞, 秦如霞, 李必红. 双聚能槽药柱的理论研究及其工程应用 [J]. 采矿技术, 2009, 9(5): 40–44. DOI: 10.13828/j.cnki.ckjs.2009.05.018.
    [13]
    朱飞昊, 刘泽功, 高魁, 等. 构造带内巷道定向聚能爆破掘进围岩损伤特征试验研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2037–2047. DOI: 10.13722/j.cnki.jrme.2018.0344.

    ZHU F H, LIU Z G, GAO K, et al. Experimental study on rock damage of roadway excavation by cumulative blasting in structural coal [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2037–2047. DOI: 10.13722/j.cnki.jrme.2018.0344.
    [14]
    刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用 [J]. 岩石力学与工程学报, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.

    LIU J, LIU Z G, GAO K, et al. Experimental study and application of directional focused energy blasting in deep boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.
    [15]
    秦健飞. 双聚能预裂与光面爆破综合技术 [M]. 北京: 中国水利水电出版社, 2014: 45–70.
    [16]
    MEURER A, SMITH C P, PAPROCKI M, et al. SymPy: symbolic computing in python [J]. PeerJ Preprints, 2016, 6: e2083v1. DOI: 10.7287/PEERJ.PREPRINTS.2083V1.
    [17]
    王汪洋. 隧道聚能水压控制爆破岩机理与参数优化研究 [D]. 南宁: 广西大学, 2019: 76–80.

    WANG W Y. Study on rock breaking mechanism and parameter optimization of cumulative hydraulic controlled blasting in tunnel [D]. Nanning: Guangxi University, 2019: 76–80.
    [18]
    MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
    [19]
    LIU K, LI Q Y, WU C Q, et al. A study of cut blasting for one-step raise excavation based on numerical simulation and field blast tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 91–104. DOI: 10.1016/j.ijrmms.2018.06.019.
    [20]
    XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: 10.1016/j.tust.2017.03.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(8)

    Article Metrics

    Article views (519) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return