[1] ZHOU L, ZHU Z M, DONG Y Q, et al. The influence of impacting orientations on the failure modes of cracked tunnel [J]. International Journal of Impact Engineering, 2019, 125: 134–142. DOI: 10.1016/j.ijimpeng.2018.11.010.
[2] HU Y G, LIU M S, WU X X, et al. Damage-vibration couple control of rock mass blasting for high rock slopes [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 137–144. DOI: 10.1016/j.ijrmms.2018.01.028.
[3] HASANIPANAH M, AMNIEH H B, ARAB H, et al. Feasibility of pso-anfis model to estimate rock fragmentation produced by mine blasting [J]. Neural Computing and Applications, 2018, 30(4): 1015–1024. DOI: 10.1007/s00521-016-2746-1.
[4] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. DOI: 10.1016/j.engfracmech.2017.08.037.
[5] WANG Y B, YANG R S. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test [J]. Engineering fracture mechanics, 2017, 184: 319–338. DOI: 10.1016/j.engfracmech.2017.09.006.
[6] SEGARRA P, SANCHIDRIAN A, CASTEDO R, et al. Coupling of blasting seismographs to rock and its effectiveness for horizontal ground motion [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 92: 81–90. DOI: 10.1016/j.ijrmms.2016.12.012.
[7] ZHOU L, ZHU Z M, DONG Y Q, et al. Study of the fracture behavior of mode Ⅰ and mixed mode Ⅰ/Ⅱ cracks in tunnel under impact loads [J]. Tunnelling and Underground Space Technology, 2019, 84: 11–21. DOI: 10.1016/j.tust.2018.10.018.
[8] YI C P, SJÖBERG J, JOHANSSON D. Numerical modelling for blast-induced fragmentation in sublevel caving mines [J]. Tunnelling and Underground Space Technology, 2017, 68: 167–173. DOI: 10.1016/j.tust.2017.05.030.
[9] SIM Y, CHO G, SONG K. Prediction of fragmentation zone induced by blasting in rock [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2177–2192. DOI: 10.1007/s00603-017-1210-6.
[10] 张财贵, 曹富, 李炼, 等. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度 [J]. 力学学报, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.

ZHANG C G, CAO F, LI L, et al. Determination of dynamic fracture initiation, propagation, and arrest toughness of rock using scdc specimen [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.
[11] 杨井瑞, 张财贵, 周妍, 等. 用SCDC试样测试岩石动态断裂韧度的新方法 [J]. 岩石力学与工程学报, 2015, 34(2): 279–292. DOI: 10.13722/j.cnki.jrme.2015.02.007.

YANG J R, ZHANG C G, ZHOU Y, et al. A new method for determining dynamic fracture toughness of rock using scdc specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 279–292. DOI: 10.13722/j.cnki.jrme.2015.02.007.
[12] WANG Q, YANG J, ZHANG C, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical-analytical method [J]. Engineering Fracture Mechanics, 2015, 141: 78–94. DOI: 10.1016/j.engfracmech.2015.04.025.
[13] ZHOU Y, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(1): 105–112. DOI: 10.1016/j.ijrmms.2011.10.004.
[14] DAI F, WEI M D, XU N W, et al. Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks [J]. Computers and Geotechnics, 2015, 69: 424–441. DOI: 10.1016/j.compgeo.2015.06.011.
[15] 赵新涛, 刘东燕, 程贵海, 等. 爆生气体作用机理及岩体裂纹扩展分析 [J]. 重庆大学学报, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014.

ZHAO X T, LIU D Y, CHENG G H, et al. Analysis of blasting gas mechanism and rock crack growth [J]. Journal of Chongqing University, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014.
[16] 杨小林, 王梦恕. 爆生气体作用下岩石裂纹的扩展机理 [J]. 爆炸与冲击, 2001, 21(2): 111–116.

YANG X L, WANG M S. Mechanism of rock crack growth under detonation gas loading [J]. Explosion and Shock Waves, 2001, 21(2): 111–116.
[17] 杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.

YANG R S, DING C X, WANG Y B, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.
[18] 李清, 薛耀东, 于强, 等. 含预制裂纹L形梁柱试件动态断裂过程 [J]. 爆炸与冲击, 2018, 38(3): 491–500. DOI: 10.11883/bzycj-2017-0255.

LI Q, XUE Y D, YU Q, et al. Dynamic fracture processes of L-shaped beam-column specimens with prefabricated cracks [J]. Explosion and Shock Waves, 2018, 38(3): 491–500. DOI: 10.11883/bzycj-2017-0255.
[19] 邱加冬, 李地元, 李夕兵, 等. 预制缺陷对花岗岩层裂破坏的影响 [J]. 爆炸与冲击, 2018, 38(3): 665–670. DOI: 10.11883/bzycj-2016-0310.

QIU J D, LI D Y, LI X B, et al. Effect of pre-existing flaws on spalling fracture of granite [J]. Explosion and Shock Waves, 2018, 38(3): 665–670. DOI: 10.11883/bzycj-2016-0310.
[20] 张柱, 赵慧, 于晖. 混凝土材料动态力学性能实验与数值模拟研究 [J]. 高压物理学报, 2011, 25(6): 533–538. DOI: 10.11858/gywlxb.2011.06.00.

ZHANG Z, ZHAO H, YU H. Experiments and numerical simulations of concrete dynamic mechanical properties [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 533–538. DOI: 10.11858/gywlxb.2011.06.00.
[21] 张培文, 李世强, 王志华, 等. 爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应 [J]. 爆炸与冲击, 2018, 38(1): 140–147. DOI: 10.11883/bzycj-2017-0017.

ZHANG P W, LI S Q, WANG Z H, et al. Dynamic response of sandwich beam with foldable core under blast loading [J]. Explosion and Shock Waves, 2018, 38(1): 140–147. DOI: 10.11883/bzycj-2017-0017.
[22] 胡刚, 郝传波, 景海河. 爆炸作用下岩石介质应力波传播规律研究 [J]. 煤炭学报, 2001, 26(3): 270–273. DOI: 10.3321/j.issn:0253-9993.2001.03.010.

HU G, HAO C B, JING H H. Study of the laws of stress wave propagation in rock bar under blasting loading [J]. Journal of China Coal Society, 2001, 26(3): 270–273. DOI: 10.3321/j.issn:0253-9993.2001.03.010.
[23] 刘明涛, 汤铁钢, 郭昭亮, 等. 膨胀环实验平台及其在材料动力学行为研究中的应用 [J]. 实验力学, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.

LIU M T, TANG T G, GUO Z L, et al. Expanding ring experimental platform and its application in material dynamic mechanical behavior investigation [J]. Journal of Experimental Mechanics, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.
[24] SHI F F, MERLE R, HOU B, et al. A critical analysis of plane shear tests under quasi-static and impact loading [J]. International Journal of Impact Engineering, 2014, 74(9): 107–119. DOI: 10.1016/j.ijimpeng.2014.06.012.
[25] CHOUDHRY S, LEE J K. Dynamic plane-strain finite element simulation of industrial sheet-metal forming processes [J]. International Journal of Impact Engineering, 1994, 36(3): 189–207. DOI: 10.1016/0020-7403(94)90069-8.
[26] XIA K, HUANG S, DAI F. Evaluation of the frictional effect in dynamic notched semi-circular bend tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62(9): 148–151. DOI: 10.1016/j.ijrmms.2013.06.001.
[27] 张盛, 李新文. 中心孔径对岩石动态断裂韧度测试值的影响 [J]. 岩石力学与工程学报, 2015, 34(8): 1660–1666. DOI: 10.13722/j.cnki.jrme.2014.1404.

ZHANG S, LI X W. Influence of diameter of center holes on measured values of dynamic fracture toughness of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1660–1666. DOI: 10.13722/j.cnki.jrme.2014.1404.
[28] 徐世烺. 混凝土断裂试验与断裂韧度测定标准方法[M]. 北京: 机械工业出版社出版, 2010.
[29] 洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究 [J]. 岩石力学与工程学报, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012.

HONG L, LI X B, MA C D, et al. Study on size effect of rock dynamic strength and strain rate sensitivity [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012.
[30] 周妍, 张财贵, 杨井瑞. 圆孔内单边(或双边)裂纹平台巴西圆盘应力强度因子的全面标定 [J]. 应用数学和力学, 2015, 36(1): 16–30. DOI: 10.3879/j.issn.1000-0887.2015.01.002.

ZHOU Y, ZHANG C G, YANG J R. Comprehensive calibration of the stress intensity factor for the holed flattened brazilian disc with an inner single crack or double cracks [J]. Applied Mathematics and Mechanics, 2015, 36(1): 16–30. DOI: 10.3879/j.issn.1000-0887.2015.01.002.
[31] 樊鸿, 张盛, 王启智. 用应变片法确定混凝土动态起裂时间的研究 [J]. 振动与冲击, 2010, 29(1): 153–156. DOI: 10.3969/j.issn.1000-3835.2010.01.033.

FAN H, ZHANG S, WANG Q Z. Determining dynamic fracture initiation time for concrete with strain gauge method [J]. Journal of Vibration and Shock, 2010, 29(1): 153–156. DOI: 10.3969/j.issn.1000-3835.2010.01.033.
[32] WEISBROD G, RITTEL D. A method for dynamic fracture toughness determination using short beams [J]. International Journal of Fracture, 2000, 104(1): 89–103. DOI: 10.1023/a:1007673528573.
[33] 闫长斌, 徐国元, 杨飞. 爆破动荷载作用下围岩累积损伤效应声波测试研究 [J]. 岩土工程学报, 2007, 29(1): 88–93. DOI: 10.3321/j.issn:1000-4548.2007.01.014.

YAN C B, XU G Y, YANG F. Measurement of sound waves to study cumulative damage effect on surrounding rock under blasting load [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 88–93. DOI: 10.3321/j.issn:1000-4548.2007.01.014.
[34] 张培源, 张晓敏, 汪天庚. 岩石弹性模量与弹性波速的关系 [J]. 岩石力学与工程学报, 2001, 20(6): 785–788. DOI: 10.3321/j.issn:1000-6915.2001.06.006.

ZHANG P Y, ZHANG X M, WANG T G. Relationship between elastic moduli and wave velocities in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 785–788. DOI: 10.3321/j.issn:1000-6915.2001.06.006.
[35] 尹尚先, 王尚旭. 弹性模量、波速与应力的关系及其应用 [J]. 岩土力学, 2003(S2): 597–601. DOI: 10.16285/j.rsm.2003.s2.143.

YIN S X, WANG S X. Relation of stresses with elastic modulus and velocities and its application [J]. Rock and Soil Mechanics, 2003(S2): 597–601. DOI: 10.16285/j.rsm.2003.s2.143.
[36] 杨桂通, 张善元. 弹性动力学[M]. 北京: 中国铁道出版社, 1988.
[37] RICE J R. A path integral and the approximate analysis of ctrain concentration by notches and cracks [J]. Journal of Applied Mechanics, 1968, 35(2): 379–386. DOI: 10.1115/1.3601206.
[38] 宫经全, 张少钦, 李禾, 等. 基于相互作用积分法的应力强度因子计算 [J]. 南昌航空大学学报(自然科学版), 2015, 29(1): 42–48. DOI: 10.3969/j.issn.1001-4926.2015.01.007.

GONG J Q, ZHANG S Q, LI H, et al. Computation of the stress intensity factor based on the interaction integral method [J]. Journal of Nanchang Hangkong University (Natural Sciences), 2015, 29(1): 42–48. DOI: 10.3969/j.issn.1001-4926.2015.01.007.