[1] ASHBY M F, EVANS A, FLECK N A, et al. Metal foams: a design guide [M]. Oxford, UK: Butterworth-Heinemann, 2000. DOI: 10.1016/S0261-3069(01)00049-8.
[2] GIBSON L J A A, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997. DOI: 10.1016/0921-5093(90)90295-E.
[3] WANG A J, MCDOWELL D L. In-plane stiffness and yield strength of periodic metal honeycombs [J]. Journal of Engineering Materials & Technology, 2004, 126(2): 137–156. DOI: 10.1115/1.1646165.
[4] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(8): 1747–1769. DOI: 10.1016/s0022-5096(01)00010-2.
[5] DESHPANDE V S, FLECK N A. Collapse of truss core sandwich beams in 3-point bending [J]. International Journal of Solids & Structures, 2001, 38(36): 6275–6305. DOI: 10.1016/S0020-7683(01)00103-2.
[6] FAN H L, FANG D N, JING F N. Yield surfaces and micro-failure mechanism of block lattice truss materials [J]. Materials & Design, 2008, 29(10): 2038–2042. DOI: 10.1016/j.matdes.2008.04.013.
[7] ASHBY M F, BRÉCHET Y J M. Designing hybrid materials [J]. Acta Materialia, 2003, 51(19): 5801–5821. DOI: 10.1016/S1359-6454(03)00441-5.
[8] EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact [J]. International Journal of Impact Engineering, 2016, 95: 1–11. DOI: 10.1016/j.ijimpeng.2016.04.009.
[9] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
[10] KOOISTRA G, DESHPANDE V, WADLEY H. Hierarchical corrugated core sandwich panel concepts [J]. Journal of Applied Mechanics, 2007, 74(2): 259–268. DOI: 10.1115/1.2198243.
[11] KAZEMAHVAZI S, ZENKERT D. Corrugated all-composite sandwich structures. Part 1: Modeling [J]. Composites Science and Technology, 2009, 69(7/8): 913–919. DOI: 10.1016/j.compscitech.2008.11.030.
[12] KAZEMAHVAZI S, TANNER D, DAN Z. Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme [J]. Composites Science and Technology, 2010, 69(7): 920–925. DOI: 10.1016/j.compscitech.2008.11.035.
[13] CHEN M, PEI Y, FANG D. Computational method for radar absorbing composite lattice grids [J]. Computational Materials Science, 2009, 46(3): 591–594. DOI: 10.1016/j.commatsci.2008.12.011.
[14] FOO C C, SEAH L K, CHAI G B. Low-velocity impact failure of aluminium honeycomb sandwich panels [J]. Composite Structures, 2008, 85(1): 20–28. DOI: 10.1016/j.compstruct.2007.10.016.
[15] ZHANG J X, QIN Q H, WANG T J. The resistance of metallic sandwich plates to blast loading [J]. Key Engineering Materials, 2011, 462-463: 349–354. DOI: 10.4028/www.scientific.net/KEM.462-463.349.
[16] ZHANG J, QIN Q, WANG T J. Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores [J]. Acta Mechanica, 2013, 224(4): 759–775. DOI: 10.1007/s00707-012-0770-5.
[17] MCSHANE G J, PINGLE S M, DESHPANDE V S, et al. Dynamic buckling of an inclined strut [J]. International Journal of Solids and Structures, 2012, 49(19/20): 2830–2838. DOI: 10.1016/j.ijsolstr.2012.03.045.
[18] XUE Z, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. DOI: 10.1016/j.ijimpeng.2003.08.007.
[19] HOU S, SHU C, ZHAO S, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. DOI: 10.1016/j.compstruct.2015.02.039.
[20] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1102–1114. DOI: 10.1016/j.ijimpeng.2007.06.009.
[21] DHARMASENA K, QUEHEILLALT D, WADLEY H, et al. Dynamic response of a multilayer prismatic structure to impulsive loads incident from water [J]. International Journal of Impact Engineering, 2009, 36(4): 632–643. DOI: 10.1016/j.ijimpeng.2008.06.002.
[22] FAN H L, MENG F H, YANG W. Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials [J]. Archive of Applied Mechanics, 2006, 75(10/11/12): 635–647. DOI: 10.1007/s00419-006-0032-x.
[23] 秦庆华, 郝文乾, 郭奕蓉, 等. 一种轻质正交波纹夹芯复合结构及其制备方法: 中国, ZL201510117807.8 [P]. 2015-03-17.
[24] LEEKITWATTANA M, BOYD S W, SHENOI R A. Evaluation of the transverse shear stiffness of a steel bi-directional corrugated-strip-core sandwich beam [J]. Journal of Constructional Steel Research, 2011, 67(2): 248–254. DOI: 10.1016/j.jcsr.2010.07.010.
[25] HU Y, LI W, AN X, et al. Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels [J]. Composites Science and Technology, 2016, 125: 114–122. DOI: 10.1016/j.compscitech.2016.02.003.
[26] LI W, SUN F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments [J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313–322. DOI: 10.1016/j.compositesa.2015.11.034.
[27] HSU S S, JONES N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes [J]. International Journal of Crashworthiness, 2004, 9(2): 195–217. DOI: 10.1533/ijcr.2004.0282.
[28] KILIÇASLAN C, GÜDEN M, ODACI İ K, et al. The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures [J]. Materials & Design, 2013, 46: 121–133.