[1] Evaluation experiment of nonnuclear ammunition about Fatalness: MIL-STD-2015C [S]. 2003: 47−52.
[2] MACEK A. Transition from deflagration to detonation in cast explosives [J]. Journal of Chemical Physics, 1959, 31(2): 162–167. doi: 10.1063/1.1730287
[3] GRIFFITH N, GROOCOKE J M. The burning to detonation in solid explosive [J]. Journal of Chemical Physics, 1960: 4154–4165. doi: 10.1039/jr9600004154
[4] MCAFEE J M, ASAY B W, CAMPBELL A W, et al. Deflagration to detonation in granular HMX, ignition, kinetics and shock formation[C]//Proceedings 10th Symp(Int) on Detonation. Maryland: NSWC, 1993: 716−720. DOI: CDSTIC.DOE.10162277.
[5] LEURET F, CHAISSE F, PRESLES H N. Experimental study of the low velocity detonation regime during the deflagration to detonation transition in a high density explosive[C]// Proceedings of 11th International Symposium on Detonation//Snowmass, Colorado, 1998: 693−701.
[6] GIFFORD M J, TSEMBELIS A K, FIELD J E. Anomalous detonation velocities following type II deflagration to detonation transitions in pentaerythritol tetranitrate [J]. Journal of J Applied Phys, 2002, 91(4): 4995–5002. doi: 10.1063/1.1462415
[7] SANDUSKY H W, GRANHOLM R H, BOHL D G, et al. Deflagration to detonation transition in LX-04 as a function of loading density, temperature, and confinement[C]//13th International Detonation Symposium. Norfolk, VA, United States, 2006: 1−9.
[8] TARVER C M, GOODALE T C, SHAW R, et al. Deflagration to detonation transiton studies for two potential isomeric cast primary explosives[C] //6th Symposium (International) on Detonation//Coronado, California, 1976: 231−250.
[9] CHUZEVILLE V, BAUDIN G, LEFRANCOIS A, et al. Detonation initiation of heterogeneous melt cast high explosives[C]// 41st International Pyrotechnic Seminar, EUROPYRO, 2015: 1−5. DOI: 10.1063/1.4971467.
[10] RAO P T, GONTHIER K A. Mesostructure dependent reactive burn modeling of porous solid explosives[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, 2014: 1−10. DOI: 10.2514/6.2014-3810.
[11] RAO P T, GONTHIER K A. Analysis of compaction shock interactions during DDT of low density HMX [J]. Shock Compression of Condensed Matter, 2015: 1–7. doi: 10.1063/1.4971610
[12] TRINGE J W, VANDERSALL K S, REAUGH J E. Observation and Modeling of Deflagration to Detonation Transition (DDT) in Low Density HMX [J]. Shock Compression of Condensed Matter, 2015, 1793(1): 060024. doi: 10.1063/1.4971580
[13] BODARD S, LAPÉBIE E, SAUREL R. Experiments and modeling of dynamic powder compaction in the scope of deflagration to detonation transition studies [J]. Shock Compression of Condensed Matter, 2015, 1793(1): 040029. doi: 10.1063/1.4971523
[14] Dattelbaum D M, Sheffield S A, Gustavsen R L. A comparison of the shock initiation sensitivities, and resulting reactive flow of several 2,4,6-trinitrotoluene-based explosives [C]// Fifteenth International Detonation Symposium, 2014: 740−749.
[15] 孙锦山. 含能材料的燃烧转爆轰研究 [J]. 含能材料, 1994, 2(3): 1–12

SUN Jinshan. Study of deflagration to detonation transiton in energetic materials [J]. Chinese Journal of Energetic Materials, 1994, 2(3): 1–12
[16] 张超, 马亮, 赵凤起, 等. 含能材料燃烧转爆轰研究进展 [J]. 含能材料, 2015, 23(10): 1028–1036

ZHANG Chao, MA Liang, ZHAO Fengqi, et al. Review on Deflagration to detonation transition of energetic materials [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 1028–1036
[17] 王平. 凝聚相炸药DDT的实验研究与数值模拟[D]. 北京: 北京理工大学, 1992: 30−45.

WANG Ping. Experimental study and numerical simulation for deflagration to detonation transition about condensed explosives[D]. Beijing: Beijing Institute of Technology, 1992: 30−45.
[18] 文尚刚, 王胜强, 黄文斌, 等. 高密度B炸药的燃烧转爆轰实验研究 [J]. 爆炸与冲击, 2007, 27(11): 567–571

WEN Shanggang, WANG Shengqiang, HUANG Wenbin, et al. An experimental study on deflagration to detonation transition in high denstity compositon B [J]. Explosion and Shock Waves, 2007, 27(11): 567–571
[19] 赵同虎, 张新彦, 李斌, 等. 颗粒状HMX、RDX的燃烧转爆轰实验研究 [J]. 含能材料, 2003, 11(12): 187–190 doi: 10.11943/j.issn.1006-9941.2015.10.021

ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Experimental study on the deflagration to detonation transition for granular HMX, RDX [J]. Energetic Materials, 2003, 11(12): 187–190 doi: 10.11943/j.issn.1006-9941.2015.10.021
[20] 杨涛. 高装填密度火药床燃烧转爆轰的实验研究和数值模拟[D]. 南京: 华东工学院, 1995: 8−22.

YANG Tao. Experimental study and numerical simulation for deflagration to detonation transition in high packed propellant bed[D]. Nanjing: East China Institute of Technolagy, 1995: 8−22.
[21] 段宝福. 新型钝感工业炸药的燃烧转爆轰研究[M]. 北京: 中国水利水电出版社, 2009: 55−62.

DUAN Baofu. Study on deflagration to detonation transition for new style deterred industrial explosive. Beijing: China Waterpower Press, 2009: 55−62.
[22] 张超, 赵凤起, 金朋刚等. p(BAMO-AMMO)热塑性高能推进剂燃烧转爆轰试验研究 [J]. 火炸药学报, 2016, 39(04): 92–96

ZHANG Chao, ZHAO Fengqi, JIN Penggang, et al. Experimental study on deflagration to detonation transition (DDT) in p(BAMO-AMMO) thermoplastic high energy propellants [J]. Chinese Journal of Explosives & Propellants, 2016, 39(04): 92–96
[23] 陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究 [J]. 火炸药学报, 2012, 35(4): 69–72 doi: 10.3969/j.issn.1007-7812.2012.04.018

CHEN Xiaoming, ZHAO Ying, SONG Changwen, et al. Experimental study on deflagration to fetonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 69–72 doi: 10.3969/j.issn.1007-7812.2012.04.018
[24] 秦能. 一种RDX-CMDB推进剂危险性能研究 [J]. 含能材料, 2011, 19(06): 725–729 doi: 10.3969/j.issn.1006-9941.2011.06.027

QIN Neng, PEI Jiangfeng, WANG Mingxing. Hazard property of the RDX-CMDB propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(06): 725–729 doi: 10.3969/j.issn.1006-9941.2011.06.027
[25] 秦能, 裴江峰, 王明星. 几种典型固体推进剂的燃烧转爆轰实验研究 [J]. 火炸药学报, 2010, 33(04): 86–89 doi: 10.3969/j.issn.1007-7812.2010.04.022

QIN Neng, PEI Jiangfeng, WANG Mingxing. Experimental study on deflagration to detonation transition of several typical solid propellants [J]. Chinese Journal of Explosives & Propellants, 2010, 33(04): 86–89 doi: 10.3969/j.issn.1007-7812.2010.04.022
[26] 冯晓军, 杨建刚, 徐洪涛, 等. AP和Al含量对DNTF基炸药燃烧转爆轰的影响 [J]. 含能材料, 2016, 24(08): 752–756 doi: 10.11943/j.issn.1006-9941.2016.08.005

FENG Xiaojun, YANG Jiangang, Xu Hongtao, et al. Effect of content of AP and Al on the deflagration to detonation transition of DNTF-based explosives [J]. Chinese Journal of Energetic Materials, 2016, 24(08): 752–756 doi: 10.11943/j.issn.1006-9941.2016.08.005
[27] 陈朗, 王飞, 伍俊英, 等. 高密度压装炸药燃烧转爆轰研究 [J]. 含能材料, 2011, 19(06): 697–704 doi: 10.3969/j.issn.1006-9941.2011.06.022

CHEN Lang, WANG Fei, WU Junying, et al. Investigation of the deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Energetic Materials, 2011, 19(06): 697–704 doi: 10.3969/j.issn.1006-9941.2011.06.022
[28] 代晓淦, 王娟, 文玉史, 等. PBX-2炸药加热条件下燃烧转爆轰特性 [J]. 含能材料, 2013, 21(05): 649–652 doi: 10.3969/j.issn.1006-9941.2013.05.017

DAI Xiaogan, WANG Juan, WEN Yushi, et al. Deflagration to detonation transition characteristics for heated PBX-2 [J]. Chinese Journal of Energetic Materials, 2013, 21(05): 649–652 doi: 10.3969/j.issn.1006-9941.2013.05.017
[29] 金韶华, 松全才. 炸药理论[M]. 西安: 西北工业大学出版社, 2010: 288−304.
[30] 兵器工业第二零四研究所. 混合炸药及其发展[M]. 西安, 2008: 52−56.
[31] 兵器工业第二零四研究所. 火炸药手册[M]. 西安, 1987: 200−201.
[32] 九零三所情报室. 高能炸药性能数据手册[M]. 四川绵阳, 1982: 65−66.
[33] 成大先. 机械设计手册[M]. 北京: 化学工业出版社, 2004: 3−15.
[34] 赵生伟, 周刚, 初哲, 等. 快速热作用下带壳铸装梯黑铝炸药热响应实验研究 [J]. 兵工学报, 2014, 30(S2): 302–308 doi: 10.3321/j.issn:1000-1093.2009.08.003

ZHAO Shengwei, ZHOU Gang, CHU Zhe, et al. Experiment investigation on thermal response of cast TNT/RDX/AL [J]. Acta Armamentarii, 2014, 30(S2): 302–308 doi: 10.3321/j.issn:1000-1093.2009.08.003