[1] 彭军芝. 蒸压加气混凝土孔结构及其对性能的影响研究进展 [J]. 材料导报, 2013, 27(15): 103–107;118. DOI: 10.3969/j.issn.1005-023X.2013.15.022.

PENG J Z. A review on pore structure and properties of autoclaved aerated concrete [J]. Materials Review, 2013, 27(15): 103–107;118. DOI: 10.3969/j.issn.1005-023X.2013.15.022.
[2] 马力, 曾力, 张艳花. 加气混凝土节能应用发展现状综述 [J]. 混凝土, 2012(5): 50–52. DOI: 10.3969/j.issn.1002-3550.2012.05.016.

MA L, ZENG L, ZHANG Y H. Overview of the development of the energy saving application of aerated concrete [J]. Concrete, 2012(5): 50–52. DOI: 10.3969/j.issn.1002-3550.2012.05.016.
[3] 吴会阁, 赵彦. 蒸压加气混凝土砌块砌体承重墙抗震性能研究综述 [J]. 防灾科技学院学报, 2012, 14(2): 38–42. DOI: 10.3969/j.issn.1673-8047.2012.02.007.

WU H G, ZHAO Y. Review of studies on the seismic behavior of autoclaved aerated block bearing walls [J]. Journal of Institute of Disaster-Prevention Science and Technology, 2012, 14(2): 38–42. DOI: 10.3969/j.issn.1673-8047.2012.02.007.
[4] 许三罗. 爆炸荷载作用下砌体结构响应的有限元分析 [J]. 防灾减灾工程学报, 2007, 27(3): 357–362. DOI: 10.3969/j.issn.1672-2132.2007.03.019.

XU S L. Finite element analysis of response of masonry wall under blast loading [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(3): 357–362. DOI: 10.3969/j.issn.1672-2132.2007.03.019.
[5] 范俊余, 方秦, 陈力, 等. 砌体填充墙的抗爆性能 [J]. 爆炸与冲击, 2014, 34(1): 59–66. DOI: 10.11883/1001-1455(2014)01-0059-08.

FAN J Y, FANG Q, CHEN L, et al. Anti-blast properties of masonry infill walls [J]. Explosion and Shock Waves, 2014, 34(1): 59–66. DOI: 10.11883/1001-1455(2014)01-0059-08.
[6] DAVIDSON J S, FISHER J W, HAMMONS M I, et al. Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast [J]. Journal of Structural Engineering, 2005, 131(8): 1194–1205. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1194).
[7] CHEN L, FANG Q, FAN J Y, et al. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings [J]. Advances in Structural Engineering, 2014, 17(6): 817–836. DOI: 10.1260/1369-4332.17.6.817.
[8] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
[9] MERCX W P M, VAN WINGERDEN C J M, PASMAN H J. Venting of gaseous explosions [J]. Process Safety Progress, 1993, 12(1): 40–46. DOI: 10.1002/prs.680120106.
[10] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
[11] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2017, 104: 107–126. DOI: 10.1016/j.ijimpeng.2017.02.002.
[12] 韩永利, 陈洋, 陈龙珠. 基于LS-DYNA的墙体抗燃气爆炸能力数值分析 [J]. 防灾减灾工程学报, 2010, 30(3): 298–302. DOI: 10.3969/j.issn.1672-2132.2010.03.012.

HAN Y L, CHEN Y, CHEN L Z. Simulation on anti-blast ability of masonry wall under gas explosion load based on LS-DYNA [J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(3): 298–302. DOI: 10.3969/j.issn.1672-2132.2010.03.012.
[13] 韩永利, 陈龙珠, 陈洋. 民用住宅墙体抗燃气爆炸能力的数值模拟研究 [J]. 建筑科学, 2010, 26(9): 49–53. DOI: 10.3969/j.issn.1002-8528.2010.09.012.

HAN Y L, CHEN L Z, CHEN Y. Numerical analysis of civil house wall under gas explosion load [J]. Building Science, 2010, 26(9): 49–53. DOI: 10.3969/j.issn.1002-8528.2010.09.012.
[14] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012: 32-40.

HAN X. The dynamic response of brick masonry wall subjected to gas explosion load [D]. Xi’an: Chang’an University, 2012: 32−40.
[15] 中国石油化工集团公司. 石油化工控制室抗爆设计规范: GB 50779-2012[S]. 北京: 中国计划出版社, 2012: 9−13.
[16] LI Z, CHEN L, FANG Q, et al. Study of autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 141: 444–460. DOI: 10.1016/j.engstruct.2017.03.033.
[17] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055.
[18] HALQUIST J. LS-DYNA keyword user’s manual: Version 971 [M]. Livermore, CA: Livermore Software Technology Corporation, 2007: 350−352.
[19] GOVINDJEE S, KAY G J, SIMO J C. Anisotropic modelling and numerical simulation of brittle damage in concrete [J]. International Journal for Numerical Methods in Engineering, 1995, 38(21): 3611–3633. DOI: 10.1002/nme.1620382105.
[20] 国家建筑材料工业局. 加气混凝土力学性能试验方法: GB/T11971-1997[S]. 北京: 中国标准出版社1998: 10−14.
[21] 陕西省建筑科学研究院. 建筑砂浆基本性能试验方法标准: JGJ/T70-2009[S]. 北京: 中国建筑工业出版社, 2009: 1−22.
[22] U.S. Department of Defense. Standard test method for tensile properties of polymer matrix composite materials: ASTM D 3039-14 [S]. 2014.
[23] American Society of Testing Materials. Standard test method for determining tensile properties of fiber reinforced polymer matrix composites used for strengthening of civil structures: ASTM D 7565-10 [S]. 2010.
[24] IRSHIDAT M, AL-OSTAZ A, CHENG A, et al. Nanoparticle reinforced polymer for blast protection of unreinforced masonry wall: laboratory blast load simulation and design models [J]. Journal of Structural Engineering, 2011, 137(10): 1193–1204. DOI: 10.1061/(ASCE)ST.1943-541X.0000361.
[25] 许三罗, 方秦. 弹性聚合物和碳纤维布加固的砌体墙抗爆性能的数值分析 [J]. 解放军理工大学学报(自然科学版), 2010, 11(3): 306–311. DOI: 10.3969/j.issn.1009-3443.2010.03.013.

XU S L, FANG Q. Numerical analysis on blast-resistant capacity of masonry walls retrofitted with elastomeric polymer and CFRP [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(3): 306–311. DOI: 10.3969/j.issn.1009-3443.2010.03.013.
[26] 黄华, 吕卫东, 刘伯权. 爆炸荷载作用下粘贴Polymer Sheet膜材砌体墙防护性能研究 [J]. 振动与冲击, 2013, 32(19): 131–138. DOI: 10.3969/j.issn.1000-3835.2013.19.023.

HUANG H, LYU W D, LIU B Q. Protective performance of masonry walls strengthened with polymer sheet under explosive loading [J]. Journal of Vibration and Shock, 2013, 32(19): 131–138. DOI: 10.3969/j.issn.1000-3835.2013.19.023.
[27] EAMON C D. Reliability of concrete masonry unit walls subjected to explosive loads [J]. Journal of Structural Engineering, 2007, 133(7): 935–944. DOI: 10.1061/(ASCE)0733-9445(2007)133:7(935).
[28] EAMON C D, BAYLOT J T, O’DANIEL J L. Modeling concrete masonry walls subjected to explosive loads [J]. Journal of Engineering Mechanics, 2004, 130(9): 1098–1106. DOI: 10.1061/(ASCE)0733-9399(2004)130:9(1098).
[29] DENNIS S T, BAYLOT J T, WOODSON S C. Response of 1/4-scale concrete masonry unit (CMU) walls to blast [J]. Journal of Engineering Mechanics, 2002, 128(2): 134–142. DOI: 10.1061/(ASCE)0733-9399(2002)128:2(134).
[30] U.S. Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. 2008: 1635−1649.