[1] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. DOI: 10.1016/S0022-5096(98)00044-1.
[2] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti-6Al-4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. DOI: 10.1016/j.mechmat.2008.03.002.
[3] PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. International Journal of Impact Engineering, 2010, 37(6): 703–714. DOI: 10.1016/j.ijimpeng.2009.08.002.
[4] BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves [J]. Journal of Applied Mechanics, 1966, 33(4): 917–923. DOI: 10.1115/1.3625202.
[5] BAI Y L, XUE Q, Xu Y, SHEN L. Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V [J]. Mechanics of Materials, 1994, 17(2/3): 155–64. DOI: 10.1016/0167-6636(94)90056-6.
[6] DUFFY J, CAMPBELL J D, HAWLEY R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum [J]. Journal of Applied Mechanics, 1971, 38(1): 83–91. DOI: 10.1115/1.3408771.
[7] CAMPBELL J D, ELEICHE A M, TSAO M C C. Strength of metals and alloys at high strains and strain rates [C] // JAFFEE R I, WILCOX B A. Fundamental Aspects of Structural Alloy Design. Boston, MA: Springer, 1977: 545−563. DOI: 110.1007/978-1-4684-2421-8_19.
[8] HARTMANN K H, KUNZE H D, MEYER L W. Metallurgical effects on impact loaded materials [C] // MEYERS M A, MURR L E. Shock Waves and High-Strain-Rate Phenomena in Metals. Boston, MA: Springer, 1981: 325−337. DOI: 10.1007/978-1-4613-3219-0_21.
[9] MINNAAR K, ZHOU M. An analysis of the dynamic shear failure resistance of structural metals [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 2155–2170. DOI: 10.1016/S0022-5096(98)00020-9.
[10] PURSCHE F, MEYER L W. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels [J]. Engineering Transactions, 2011, 59(2): 67–84.
[11] MURR L E, STAUDHAMMER K P, MEYERS M A. Metallurgical applications of shock-wave and high-strain-rate phenomena[M]. New York: Marcel Dekker, 1986.
[12] MEYER L W, PURSCHE F. Experimental methods [C] // DODD B, BAI Y. Adiabatic Shear Localization: Frontiers and Advances. London: Elsevier, 2012.
[13] RUSINEK A, KLEPACZKO J R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress [J]. International Journal of Plasticity, 2001, 17(1): 87–115. DOI: 10.1016/S0749-6419(00)00020-6.
[14] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experiment Mechanics, 2002, 42(1): 58–64. DOI: 10.1007/BF02411052.
[15] GUO Y, LI Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
[16] 许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.

XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.
[17] XU Zejian. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. DOI: 10.1016/j.ijimpeng.2016.11.012.
[18] XU Zejian. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–28. DOI: 10.1016/j.ijimpeng.2018.04.003.
[19] 张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.

ZHANG Weiqi, XU Zejian, SUN Zhongyue, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.
[20] GORHAM D A. Measurement of stress-strain properties of strong metals at very high strainrates [C] // HARDING J. Mechanical properites at high rates of strain.1979: 16−24.
[21] DHARAN C K H, HAUSER F E. Determination of stress-strain characteristics at very high strain rates [J]. Experimental Mechanics, 1970, 10(9): 370–376. DOI: 10.1007/BF02320419.
[22] ZHAO Han. A study on testing techniques for concrete-like materials under compressive impact loading [J]. Cement and Concrete Composites, 1998, 20(4): 293–299. DOI: 10.1016/S0958-9465(98)00008-0.
[23] 陶俊林, 陈裕泽, 陈刚, 等.直接撞击Hopkinson压杆系统数值模拟[J].固体力学学报, 2003, 24(S): 198−203.

TAO Junlin, CHEN Yuze, CHEN Gan, et al. Numerical simulation of direct impact Hopkinson pressure bar system[J]. Acta Mechanica Solida Sinica, 2003, 24(S): 198−203.
[24] 陶俊林. 直接撞击Hopkinson实验技术讨论 [C] // 中国科学技术大学冲击动力学实验室.第三届全国爆炸力学实验技术交流会论文集. 2004: 11−23.