[1] 朱志斌, 郭志军, 刘英, 等. 氧化铝陶瓷的发展与应用 [J]. 陶瓷, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.

ZHU Z B, GUO Z J, LIU Y, et al. Development and application of alumina ceramic [J]. Ceramics, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.
[2] 胡玉龙,蒋凡. 装甲陶瓷的发展现状和趋势 [J]. 兵器材料科学与工程, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.

HU Y L, JIANG F. Development and current status of armor ceramics [J]. Ordnance Material Science and Engineering, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.
[3] 李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究[D]. 南京: 南京航空航天大学, 2008: 6−7. DOI: 10.7666/d.d052470.
[4] STRAßBURGER E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society, 2009, 29(2): 267–273. DOI: 10.1016/j.jeurceramsoc.2008.03.049.
[5] 吴燕平, 燕青芝. 防弹装甲中的陶瓷材料 [J]. 兵器材料科学与工程, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.

WU Y P, YAN Q Z. Application of ceramics in armor protection [J]. Ordnance Material Science and Engineering, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.
[6] 唐录成. 平面冲击加载下A95陶瓷动态力学性能研究[D]. 重庆: 重庆大学, 2009: 1−10. DOI: 10.7666/d.y1666484.
[7] JIAO T, LI Y, RAMESH K T, et al. High rate response and dynamic failure of structural ceramics [J]. International Journal of Applied Ceramic Technology, 2010, 1(3): 243–253. DOI: 10.1111/j.1744-7402.2004.tb00176.x.
[8] KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P. A scaling law for the dynamic strength of brittle solids [J]. Acta Materialia, 2013, 61(9): 3509–3521. DOI: 10.1016/j.actamat.2013.02.045.
[9] SZLUFARSKA I, RAMESH K T, WARNER D H. Simulating mechanical behavior of ceramics under extreme conditions [J]. Annual Review of Materials Research, 2013, 43(1): 131–156. DOI: 10.1146/annurev-matsci-071312-121714.
[10] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. American Institute of Physics, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
[11] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.

YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
[12] 李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239.

LI Y L, HU S S, LI Y H. Research on dynamic behaviors of A95 ceramics under compression [J]. Explosion and Shock Waves, 2004, 24(3): 233–239.
[13] 张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232.

ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232.
[14] 刘荫秋, 王正国, 马玉媛. 创伤弹道学[M]. 北京: 人民军医出版社, 1991: 76−77.
[15] 靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014: 27−57.
[16] 周风华, 王永刚. 影响冲击载荷下脆性材料碎片尺度的因素 [J]. 爆炸与冲击, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.

ZHOU F H, WANG Y G. Factors controlling sizes of brittle fragments due to impact loadings [J]. Explosion and Shock Waves, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.
[17] 周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.

ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.
[18] SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
[19] HUANG J Y, E J C, HUANG J W, et al. Dynamic deformation and fracture of single crystal silicon: fracture modes, damage laws, and anisotropy [J]. Acta Materialia, 2016, 114: 136–145. DOI: 10.1016/j.actamat.2016.05.022.
[20] 许峰, 胡小方, 卢斌, 等. 碳化硼固相烧结微观结构演化的同步辐射CT观测 [J]. 无机材料学报, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.

XU F, HU X F, LU B, et al. Microstructures-evolution observation of boron carbide ceramic during sintering process by synchrotron radiation X-ray computed tomography [J]. Journal of Inorganic Materials, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.
[21] SHENG J, LUMING S, FRANÇOIS G, et al. Energy dissipation from two-glass-bead chains under impact [J]. International Journal of Impact Engineering, 2018, 114: 160–168. DOI: 10.1016/j.ijimpeng.2018.01.002.
[22] BIE B X, HUANG J Y, FAN D, et al. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study [J]. Carbon, 2017, 121: 127–133. DOI: 10.1016/j.carbon.2017.05.083.
[23] KONG D, FONSECA J. Quantification of the morphology of shelly carbonate sands using 3D images [J]. Géotechnique, 2017, 68(3): 1–13. DOI: 10.1680/jgeot.16.p.278.
[24] RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
[25] SONG B, CHEN W. Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1007/BF02428252.
[26] GURSOY D, DE C F, XIAO X H, et al. TomoPy: a framework for the analysis of synchrotron tomographic data [J]. Journal of Synchrotron Radiation, 2014, 21(5): 1188–1193. DOI: 10.1107/S1600577514013939.
[27] FOK S L, MITCHELL B C, SMART J, et al. A numerical study on the application of Weibull theory to brittle materials [J]. Engineering Fracture Mechanics, 2001, 68(10): 1171–1179. DOI: 10.1016/S0013-7944(01)00022-4.
[28] HUANG J, XU S, YI H, et a1. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268(1): 86–94. DOI: 10.1016/j.powtec.2014.08.037.
[29] KELEŞ Ö, GARCÍA R E, BOWMAN K J. Deviations from Weibull statistics in brittle porous materials [J]. Acta Materialia, 2013, 61(19): 7207–7215. DOI: 10.1016/j.actamat.2013.08.025.
[30] STAEHLER J M, PREDEBON W W, PLETKA B J, et al. Micromechanisms of deformation in high-purity hot-pressed alumina [J]. Materials Science & Engineering: A, 2000, 291(1-2): 37–45. DOI: 10.1016/s0921-5093(00)00976-x.
[31] THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. DOI: 10.1021/ma00148a028.
[32] FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. DOI: 10.1016/j.biomaterials.2013.12.092.