[1] TARVER C M, MCGUIRE R R, WRENN E W, et al. Thermal decomposition of explosives with full containment in one-dimensional geometries [C] // Paper presented at 17th International Symposium on Combustion. England, 1978.
[2] WILLIAMS M R, MATEI M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. part 1. time to explosion and apparent activation energy [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435–441. DOI: 10.1002/prep.200600058.
[3] JAN H E. Slow heating, munitions test procedures: NATO STANAG 4382 [S]. Brussels: NATO Standardization Agency, 2003: 1−6.
[4] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.

DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different Heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
[5] NAOS J T, KNET L A, GILL W, et al. Fast cook-off testing in enclosed facilities with reduced emissions: SAND-91-0470C [R]. USA: Sandia National Labs, 1991.
[6] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

HU H B, GUO Y W, FU H, et al. Dominant mechanism affecting reaction violence transition of explosive in accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
[7] 杨荣杰, 李玉平, 刘云飞, 等. 固体推进剂燃烧过程实时监测与燃速测定系统 [J]. 推进技术, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.

YANG R J, LI Y P, LIU Y F, et al. Advanced system of monitor and measurement for the combustion process and rate of solid propellants [J]. Journal of Propulsion Technology, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.
[8] 温刚, 堵平, 廖昕. 用密闭爆发器法测定发射药实际燃速的原理和方法 [J]. 火炸药学报, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.

WEN G, DU P, LIAO X. Principle and method of measuring actual burning rate of propellant by closed bomb [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.
[9] 胡松启, 邓哲, 刘迎吉. 复合推进剂应变条件下燃速变化的实验研究 [J]. 固体火箭技术, 2013, 36(2): 230–233.

HU S Q, DENG Z, LIU Y J. Experimental research on burning rate change of composite propellant under strain [J]. Journal of Solid Rocket Technology, 2013, 36(2): 230–233.
[10] COOPER M A, OLIVER M S. The burning regimes and conductive burn rates of titanium subhydride potassium perchlorate (TiH1.65/KClO4) in hybrid closed bomb-strand burner experiments [J]. Combustion and Flame, 2013, 160: 2619–2630. DOI: 10.1016/j.combustflame.2013.05.015.
[11] MAIENSCHEIN J L, WARDELL J F, DEHAVEN M R, et al. Deflagration of HMX based explosives at high temperatures and pressures [J]. Propellants, Explosives, Pyrotechnics, 2004, 29: 287–295. DOI: 10.1002/prep.200400061.
[12] GLASCOE E A, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C] // Shock Compression of Condensed Matter, American Institute Physics, 2011.
[13] MAIENSCHEIN J L, WARDELL J F. Deflagration behavior of HMX-based explosives at high temperatures and pressures [C] // JANNAF 21st Propulsion Systems Hazards Subcommittee Meeting. Colorado Springs, CO, United States, 2003.
[14] GLASCOE E A, MAIENSCHEIN J L, BURNHAM A K, et al. PBXN-9 ignition kinetics and deflagration rates [C] // 55th JANNAF Propulsion Meeting. Newton, MA, United States, 2008.
[15] KOERNER J, MAIENSCHEIN J L, BLACK K, et al. LX-17 deflagration at high pressures and temperatures [C] // 23rd Propulsion Systems Hazards Joint Subcommittee Meeting. San Diego, CA, United States, 2006.
[16] ASAY B. Shock wave science and technology reference library, Vo. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010.