[1] BOLTON O, SIMKE L R, PAGORIA P F, et al. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX [J]. Crystal Growth and Design, 2012, 12(9): 4311–4314. DOI: 10.1021/cg3010882.
[2] TARVER C M, TRAN T D. Thermal decomposition models for HMX-based plastic bonded explosives [J]. Combustion and Flame, 2004, 137(1/2): 50–62. DOI: 10.1016/j.combustflame.2004.01.002.
[3] URTIEW P A, FORBES J W, GARCIA F, et al. Shock Initiation of UF-TATB at 250 ℃ [C] // FURNISH M D, HORIE Y, THADHANI N N. Shock Compression of Condensed Matter-2001. United States: American Institute of Physics, 2002: 1039−1042. DOI: 10.1063/1.1483716.
[4] AN Chongwei, LI Hequn, YE Baoyun, et al. Preparation and characterization of ultrafine HMX/TATB explosive co-crystals [J]. Central European Journal of Energetic Materials, 2017, 14(4): 876–887. DOI: 10.22211/cejem/77125.
[5] WANG Z, GUO X, WU F, et al. Preparation of HMX/TATB composite particles using a mechanochemical approach [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 327–333. DOI: 10.1002/prep.201500136.
[6] GREBENKIN K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78–87. DOI: 10.1007/s10573-009-0011-y.
[7] AUSTIN R, BARTON N, HOWARD W, et al. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals [J]. Journal of Physics: Conference Series, 2014, 500(5): 052002–052007. DOI: 10.1088/1742-6596/500/5/052002.
[8] KAPAHI A. Dynamics of void collapse in shocked energetic materials: physics of void-void interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
[9] OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
[10] TRAN L, UDAYKUMAR H S. Simulation of void collapse in an energetic material: Part 1: inert case [J]. Journal of Propulsion and Power, 2006, 22(5): 947–958. DOI: 10.2514/1.13146.
[11] ZHOU Tingting, LOU Jianfeng, ZHANG Yangeng, et al. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17627–17645. DOI: 10.1039/C6CP02015A.
[12] MASSONI J, SAUREL R, BAUDIN G, et al. A mechanistic model for shock initiation of solid explosives [J]. Physics of Fluids, 1999, 11(3): 710–736. DOI: 10.1063/1.869941.
[13] SOUERS P C, GARZA R, VITELLO P. Ignition & growth and JWL++ detonation models in coarse zones [J]. Propellants, Explosives, Pyrotechnics, 2002, 27(2): 62–71. DOI: 10.1002/1521-4087(200204)27:23.0.CO;2-5.
[14] STARKENBERG J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode [C] // SHOR J M, MAIENSCHEIN J L. The 12th Symposium (International) on Detonation. USA: Office of Naval Research, 2002: 1001−1007.
[15] SHAW M S, MENIKOFF R. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept [C] // PEIRIS C B S, ASAY B. The 14th Symposium (International) on Detonation. USA: Office of Naval Research, 2010.
[16] DUAN Zhuoping, WEN Lijing, LIU Yan, et al. A pore collapse model for hot-spot ignition in shocked multi-component explosives [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(S): 19–24. DOI: 10.1515/IJNSNS.2010.11.S1.19.
[17] KIM K. Development of a model of reaction rates in shocked multicomponent explosives [C] // LEE E L, SHORT J M. The 9th Symposium (International) on Detonation. USA: Office of the Chief of Naval Researche, 1989: 593−603.
[18] WEN Lijing, DUAN Zhuoping, ZHANG Liansheng, et al. Effects of HMX particle size on the shock initiation of PBXC03 explosive [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(2): 189–194. DOI: 10.1515/ijnsns.2011.129.
[19] 温丽晶. PBX炸药冲击起爆细观反应速率模型研究[D]. 北京: 北京理工大学, 2011.

WEN Lijing. Research on mesoscopic reaction rate model of shock initiation of PBX [D]. Beijing: Beijing Institute of Technology, 2011.
[20] LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materials, 2016, 317: 44–51. DOI: 10.1016/j.jhazmat.2016.05.052.
[21] URTIEW P A, TARVER C M. Shock initiation of energetic materials at different initial temperatures: review [J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 766–776. DOI: 10.1007/s10573-005-0085-0.
[22] URTIEW P A, VANDERSALL K S, TARVER C M, et al. Initiation of heated PBX-9501 explosive when exposed to dynamic loading: UCRL-CONF-214667 [R]. United States: Lawrence Livermore National Laboratory, 2005.