[1] BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
[2] ASAY B W. Shock wave science and technology reference library, Vol. 5:non-shock initiation of explosives [M]. Heidelberg, Baden-Württemberg, Germany: Springer, 2010: 245−292. DOI: 10.1007/978-3-540-87953-4.
[3] ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22: 923–952. DOI: 10.1016/0301-9322(96)00041-9.
[4] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

HU H B, GUO Y W, FU H, et al. The dominant mechanism of reaction violence transition for explosive accident [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
[5] DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cookoff ignition [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 606−611.
[6] DICKSON P M, ASAY B W, HENSON B F, et al. Thermal cook-off response of confined PBX 9501 [J]. Proceedings of the Royal Society A, 2004, 460(2052): 3447–3455. DOI: 10.1098/rspa.2004.1348.
[7] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Proton radiography of a thermal explosion in PBX9501 [J]. AIP Conference Proceedings, 2007, 955: 1139–1142. DOI: 10.1063/1.2832919.
[8] SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion Ⅱ. Dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111: 103516. DOI: 10.1063/1.4711072.
[9] SMILOWITZ L, HENSON B F, OSCHWALD D, et al. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography [J]. Applied Physics Letters, 2017, 111: 184103. DOI: 10.1063/1.5004424.
[10] JACKSON S I, HILL L G, BERGHOUT H L, et al. Runaway reaction in a solid explosive containing a single crack [C] // Proceedings of the 13th International Detonation Symposium. Norfolk, VA, US: Office of Naval Research, 2006: 646−655.
[11] BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX9501(a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive) [J]. Journal of Applied Physics, 2006, 99(11): 114901. DOI: 10.1063/1.2196219.
[12] 尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.

SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
[13] 尚海林, 杨洁, 李涛, 等. 约束HMX基PBX炸药裂缝中燃烧演化实验 [J]. 含能材料, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.

SHANG H L, YANG J, LI T, et al. Experimental study on burning evolution in confined explosive cracks [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.
[14] JACKSON S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
[15] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012: 67−125.
[16] MAIENSCHEIN J L, CHANDLER J B. Burn rates of pristine and degraded explosives at elevated temperatures and pressures [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 872−879.