[1] 马天宝, 任会兰, 李健, 等. 爆炸与冲击问题的大规模高精度计算 [J]. 力学学报, 2016, 48(3): 599–608. DOI: 10.6052/0459-1879-15-382.

MA T B, REN H L, LI J, et al. Large scale high precision computation for explosion and impact problems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599–608. DOI: 10.6052/0459-1879-15-382.
[2] NING J G, YUAN X P, MA T B, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions [J]. Computers and Fluids, 2015, 123: 72–86. DOI: 10.1016/j.compfluid.2015.09.011.
[3] WANG X, MA T B, NING J G. A pseudo arc-length method for numerical simulation of shock waves [J]. Chinese Physics Letters, 2014, 31(3): 030201. DOI: 10.1088/0256-307X/31/3/030201.
[4] 陈龙伟, 张华, 汪旭光. 水中多物质爆炸场的三维数值模拟 [J]. 兵工学报, 2009(S2): 1–4. DOI: 1000-1093(2009) S2-0001-04.

CHEN L W, ZHANG H, WANG X G. Three-dimensional numerical simulation of multi-material explosive field in water [J]. Acta Armamentarii, 2009(S2): 1–4. DOI: 1000-1093(2009) S2-0001-04.
[5] 张军, 赵宁, 任登凤, 等. Level set方法在自适应Cartesian网格上的应用 [J]. 爆炸与冲击, 2008, 28(5): 438–442. DOI: 10.3321/j.issn:1001-1455.2008.05.009.

ZHANG J, ZHAO N, REN D F, et al. Application of the level set method on adaptive Cartesian grids [J]. Explosion and Shock Waves, 2008, 28(5): 438–442. DOI: 10.3321/j.issn:1001-1455.2008.05.009.
[6] 肖涵山, 刘刚, 陈作斌, 等. 基于STL文件的笛卡尔网格生成方法研究 [J]. 空气动力学学报, 2006, 24(1): 120–124. DOI: 10.3969/j.issn.0258-1825.2006.01.022.

XIAO H S, LIU G, CHEN Z B, et al. The adaptive Cartesian grid generation method based on STL file [J]. Acta Aerodynamica Sinica, 2006, 24(1): 120–124. DOI: 10.3969/j.issn.0258-1825.2006.01.022.
[7] PANDEY P M, REDDY N V, DHANDE S G. Slicing procedures in layered manufacturing: a review [J]. Rapid Prototyping Journal, 2003, 9(5): 274–288. DOI: 10.1108/13552540310502185.
[8] 赵吉宾, 刘伟军. 快速成型技术中分层算法的研究与进展 [J]. 计算机集成制造系统, 2009, 15(2): 209–221.

ZHAO J B, LIU W J. Recent progress in slicing algorithm of rapid prototyping technology [J]. Computer Integrated Manufacturing Systems, 2009, 15(2): 209–221.
[9] FEI G L, MA T B, HAO L. Large-scale high performance computation on 3D explosion and shock problems [J]. Applied Mathematics and Mechanics, 2011, 32(3): 375–382. DOI: 10.1007/s10483-011-1422-7.
[10] MACGILLIVRAY J T. Trillion cell CAD-based Cartesian mesh generator for the finite-difference time-domain method on a single-processor 4-GB workstation [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2187–2190. DOI: 10.1109/TAP.2008.926790.
[11] BERENS M K, FLINTOFT I D, DAWSON J F. Structured Mesh Generation: open-source automatic nonuniform mesh generation for FDTD simulation [J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 45–55. DOI: 10.1109/MAP.2016.2541606.
[12] NING J G, MA T B, LIN G H. A mesh generator for 3-D explosion simulations using the staircase boundary approach in Cartesian coordinates based on STL models [J]. Advances in Engineering Software, 2014, 67(1): 148–155. DOI: 10.1016/j.advengsoft.2013.09.007.
[13] ISHIDA T, TAKAHASHI S, NAKAHASHI K. Efficient and robust Cartesian mesh generation for building-cube method [J]. Journal of Computational Science and Technology, 2008, 2(4): 435–446. DOI: 10.1299/jcst.2.435.
[14] FOTEINOS P, CHRISOCHOIDES N. High quality real-time image-to-mesh conversion for finite element simulations [J]. Journal of Parallel and Distributed Computing, 2013, 74(2): 2123–2140. DOI: 10.1109/SC.Companion.2012.322.
[15] QI M, CAO T T, TAN T S. Computing 2D constrained Delaunay triangulation using the GPU [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(5): 736–748. DOI: 10.1109/TVCG.2012.307.
[16] PARK S, SHIN H. Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU [J]. International Journal for Numerical Methods in Fluids, 2012, 70(11): 1393–1404. DOI: 10.1002/fld.2750.
[17] SCHWARZ M, SEIDEL H P. Fast parallel surface and solid voxelization on GPUs [J]. ACM Transactions on Graphics, 2010, 29(6): 1–10. DOI: 10.1145/1882261.1866201.
[18] SZILVI-NAGY M, MATYASI G. Analysis of STL files [J]. Mathematical and Computer Modelling, 2003, 38(7): 945–960. DOI: 10.1016/s0895-7177(03)90079-3.
[19] POSPICHAL P, JAROS J, SCHWARZ J. Parallel genetic algorithm on the CUDA architecture [J]. Lecture Notes in Computer Science, 2010, 6024: 442–451. DOI: 10.1007/978-3-642-12239-2_46.
[20] NING J G, MA T B, FEI G L. Multi-material Eulerian method and parallel computation for 3D explosion and impact problems [J]. International Journal of Computational Methods, 2014, 11(5): 1350079. DOI: 10.1142/S0219876213500795.