Some improvements of the self-consistent method for measuring the dynamic yield strength of ductile metals
-
摘要: 在J.R.Asay等提出的双屈服面法(简称AC方法)测量动态屈服强度的基础上,对实验设计和数据处理做了部分改进。在实验设计方面,在满足实验物理设计的前提下,将 AC方法的卸载实验装置(双层飞片和双台阶样品)简化为单飞片和单台阶样品,以简化波系作用,并减少了声速测量不确定度的引入因素。在数据处理方面,发现由Lagrange声速和工程应变关系曲线外推求预冲击态的体积声速容易引入较大的不确定度,而通过Lagrange声速和粒子速度关系曲线可以更清晰地得到塑性卸载起始点,使图解法和积分法得到的屈服强度值趋于一致。利用改进后的AC方法,得到了低温退火后LY12铝在20.0 GPa预冲击压力下的屈服强度为0.6 GPa。Abstract: The experiment and data reduction techniques were improved in the self-consistent method (so called AC method). One-stepped sample and single-flyer instead of the usual two-stepped sample and two-layer combined flyer were used in loading-unloading experiments. This experimental configuration can meet the physical requirements and simplify the wave interaction of loading-unloading process. The location of elastic-plastic transition is more accurately identified based on the acquired Lagrangian sound velocity against particle velocity, relative to based on the Lagrangian sound velocity against engineering strain. The dynamic yield strength of LY12-aluminum treated by low temperature annealing at 20.0 GPa shock stress was measured by using the improved AC method. The results obtained by integral method and graphical method are consistent.
-
Key words:
- mechanics of explosion /
- yield strength /
- AC method /
- LY12-aluminum /
- shock loading
-
1. 麻省理工学院研究人员发现金属在极端冲击下愈热愈强的反常规现象[1]
材料的强度依赖于加载测试时的速率,这是因为位错等缺陷的变形移动具有内在的动力学限制。随着变形应变率的增加,更多的强化机制被激发以增加其强度。麻省理工学院研究人员发现,在应变率大于 106 s−1 的微弹道冲击测试中,当温度升高至157 ℃时,铜的强度会增加约30%,纯钛和金中也观察到了这种效应。这种现象是违反直觉的,因为几乎所有材料在正常条件下加热时都会变软。纯金属的这种异常热强化是由于控制变形机制从热激活强化转变为位错的类弹道传输引起的,位错通过声子相互作用受到阻力。这些认识为从高速加工操作到高超音速运输中更准确地模拟和预测材料在各种极端应变率条件下的性能提供了新的思路。
2. 耶路撒冷希伯来大学研究人员实验证实拉伸裂纹速度可突破经典速度限制[2-3]
脆性材料会因快速裂纹而失效。经典断裂力学描述了拉伸裂纹的运动,这些裂纹在尖端的点状区域内将耗散掉被释放的弹性能。在这一框架内,“经典”拉伸裂纹并不能超过瑞利波速度。耶路撒冷希伯来大学研究人员实验利用水凝胶材料,通过实验证明了“超剪切”拉伸裂纹的存在。虽然水凝胶是一种柔性材料,但它的裂纹扩展特性完全遵循脆性材料断裂理论的预测。当水凝胶的拉伸状态超过极限时,拉伸裂纹的扩展速度明显地超过了瑞利波波速。超剪切动力学遵循的原理与指导“经典”裂纹的原理不同;这种断裂模式在临界(与材料相关)施加应变下被激发。这种非经典的拉伸断裂模式颠覆了对断裂力学的传统认知,亟需从理论层面揭示其存在的物理机制。
3. 北京大学等研究人员开发了一种动态强度高达14 GPa的碳纳米管纤维[4]
北京大学、北京石墨烯研究院、中国科学院力学研究所、武汉大学、中国科学院苏州纳米技术与纳米仿生研究所等研究人员提出了一种高强碳纳米管纤维的多尺度结构优化策略,系统提高了碳纳米管管间作用、纤维取向性、致密性和动态强度。在动态冲击性能的研究中,研究人员利用微尺度高速冲击拉伸实验装置,发现纤维随着拉伸速度的提高发生韧脆失效模式的转变,具有显著的应变率强化效应。当应变率约
1400 s−1时,纤维的动态强度达到14 GPa,突破了现有高性能纤维强度。运用强激光诱导的高速横向冲击实验方法,揭示了微米直径纤维单丝在模拟弹道冲击加载下的动力学响应规律,发现由于冲击能量的快速非局域耗散而展现出优异的防护性能,纤维比能量耗散功率远高于凯夫拉等传统防弹纤维。这些发现表明碳纳米管纤维在冲击防护领域具有巨大的应用潜力。 -
计量
- 文章访问数: 2415
- HTML全文浏览量: 106
- PDF下载量: 583
- 被引次数: 0