巷道壁面与瓦斯爆炸相互作用的数值模拟

马秋菊 张奇 庞磊

马秋菊, 张奇, 庞磊. 巷道壁面与瓦斯爆炸相互作用的数值模拟[J]. 爆炸与冲击, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05
引用本文: 马秋菊, 张奇, 庞磊. 巷道壁面与瓦斯爆炸相互作用的数值模拟[J]. 爆炸与冲击, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05
Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05
Citation: Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05

巷道壁面与瓦斯爆炸相互作用的数值模拟

doi: 10.11883/1001-1455(2014)01-0023-05
基金项目: 国家自然科学基金项目(11372044);高等学校博士学科点专项科研基金项目(20101101110005)
详细信息
    作者简介:

    马秋菊(1987—), 女, 博士研究生

    通讯作者:

    Ma Qiu-ju, maqiuju@bit.edu.cn

  • 中图分类号: O381; TD712.7

Numerical simulation on interaction between laneway surface and methane explosion

Funds: Supported by the National Natural Science Foundation of China (11372044)
  • 摘要: 通过物理机制分析,建立合理的巷道物理模型,并对燃烧爆炸反应模型中阻力系数CD和湍流特征尺度Lt进行修正,模拟实际巷道内壁粗糙情况对瓦斯爆炸传播过程的影响,为模型计算提供修正参数。研究结果表明,巷道壁面条件对瓦斯爆炸过程有很大影响;CDLt越大,爆炸峰值超压越大;当CD=3、Lt=0.008时,模拟结果与实验值的偏差最小。
  • 图  1  光滑壁面和粗糙壁面的超压

    Figure  1.  Overpressures of rough inner surface and smooth inner surface

    图  2  不同参数的超压

    Figure  2.  Overpressures under different parameters

    图  3  数值模拟和实验的超压

    Figure  3.  Overpressures by numerical simulation and experiment

    表  1  数值模拟和实验的超压

    Table  1.   Overpressures by numerical simulation and experiment

    x/m 实验 CD=3, Lt=0.008 CD=4, Lt=0.008 CD=3, Lt=0.009
    pexp, 1/kPa pexp, 2/kPa pexp, 2/kPa pexp/kPa psim/kPa ε/% psim/kPa ε/% psim/kPa ε/%
    10 120 160 156 145.3 147.8 1.7 153.4 5.6 152.3 4.8
    30 171 167 159 165.7 163.2 1.5 170.5 2.9 169.2 2.1
    40 180 168 161 169.6 161.7 4.7 166.0 2.1 164.6 2.9
    60 136 163 163 154.0 153.6 0.2 160.3 4.1 158.6 3.0
    80 167 145 130 147.3 150.0 1.8 154.7 5.0 153.5 4.2
    100 151 137 125 137.7 141.0 2.4 141.8 3.0 141.9 3.1
    120 139 131 138 136.0 128.9 5.2 128.1 5.8 128.5 5.5
    140 128 129 130 129.0 118.2 8.4 117.3 9.1 117.7 8.8
    160 118 126 121 121.7 110.0 9.6 109.8 9.8 110.0 9.6
    200 90 125 106 107.0 99.7 6.8 100.2 6.4 100.2 6.4
    280 98 118 85 100.3 85.1 15.2 84.8 15.5 85.1 15.2
    340 66 110 80 85.3 75.9 11.0 75.3 11.7 75.6 11.4
    380 74 95 76 81.7 70.8 13.3 70.1 14.2 70.4 13.8
    下载: 导出CSV
  • [1] Bjerketvedt D, Bakke J R, van Wingerden K. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, 52(1): 1-150. doi: 10.1016/S0304-3894(97)81620-2
    [2] Peraldi O, Knystautas R, Lee J H. Criteria for transition to detonation in tubes[J]. Symposium(International)on Combustion, 1988, 21(1): 1629-1637.
    [3] Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1): 83-89. doi: 10.1016/j.ssci.2011.07.005
    [4] 曲志明.掘进巷道瓦斯爆炸数值及实验分析[J].湖南科技大学学报:自然科学版, 2008, 23(2): 9-14.

    Qu Zhi-ming. Numerical and experimental analysis of gas explosion in the excavation[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2008, 23(2): 9-14.
    [5] Popat N R, Catlin C A, Arntzenb B J. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996, 45(1): 1-25. doi: 10.1016/0304-3894(95)00042-9
    [6] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and Auto-ReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 280-287.
    [7] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3): 233-247. doi: 10.1016/S0304-3894(02)00161-9
    [8] AutoReaGas: Reactive gas dynamics and blast analysis software user manual: Version 3.1[M]. Century Dynamics and TNO, 2002.
    [9] AutoReaGas: Interactive software theory manual[M]. Century Dynamics and TNO, 2002.
    [10] 吴兵.矿井半封闭空间瓦斯爆燃过程热动力学研究[D].北京: 中国矿业大学(北京), 2003.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  3162
  • HTML全文浏览量:  299
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-16
  • 修回日期:  2013-01-08
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回