Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam
-
摘要: 利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统对空心微珠体积分数为0.4的空心微珠/1199Al复合泡沫在1 700~2 900s-1应变率范围内的动态压缩力学性能、吸能性能进行了研究,还利用SEM扫描电镜对压缩试件断口进行微观组织分析,与准静态条件下材料的压缩力学性能及压缩变形机制进行了对比。结果表明,空心微珠/1199Al复合泡沫是一种应变率敏感材料,与准静态结果相比,在高应变率下复合材料的流动应力和塑性应变有明显的增大,应变率硬化效应对复合材料的流动应力的影响明显大于应变硬化的影响。复合材料的准静态和动态压缩变形机制存在一定差异,动态载荷作用下,空心微珠/1199Al复合泡沫内部空心微珠的压缩和基体材料的充填同时发生,组分之间具有良好的协调变形能力。
-
关键词:
- 固体力学 /
- 动态压缩力学性能 /
- 分离式霍普金森压杆 /
- 空心微珠/1199Al复合泡沫 /
- 吸能特性
Abstract: The fly-ash cenospheres-reinforced 1199Al-matrix composite foam was prepared by the pressure infiltration technique, in which containing the 80-μm-sized fly-ash cenospheres with the volume fraction of 0.4.Dynamic compression experiments were performed with a split Hopkinson pressure bar(SHPB)setup to investigate the dynamic compression properties and energy-absorption capability of the prepared composite foam in the strain rate range from 1 700s-1 to 2 900s-1.And the fractured surfaces of the compressed specimens were observed by a scanning electron microscopy.Moreover, the energy-absorption capability and the deformation mechanism of the prepared composite faom in dynamic compressions were compared with those of it in quasi-static compressions by an Instron 5569 tensile machine.The results show that the cenospheres-reinforced 1199Al-matrix composite foam is a strain-rate sensitive material.Its flow stress and plastic strain at the high strain rates are obviously higher than those under the quasi-static conditions.And the strain-rate hardening effect can more markedly influence the flow stress of the cenospheres-reinforced 1199Al-matrix composite foam than the strain-hardening effect.Furthermore, there are some differences between the quasi-static and dynamic compressive deformation mechanisms in the cenospheres-reinforced 1199Al-matrix composite foam.Under dynamic loadings, the fly-ash cenospheres in the cenospheres-reinforced 1199Al-matrix composite foam can be simultaneously compressed when the Al-matrix material is being filled, and there lies a good coordinate deformation capacity between the components. -
-
[1] Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications[M]. Wiley-Vch, 2002. [2] Ahmaruzzaman M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. doi: 10.1016/j.pecs.2009.11.003 [3] Dou Z Y, Jiang L T, Wu G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10): 945-948. doi: 10.1016/j.scriptamat.2007.07.024 [4] Daoud A. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 618-625. [5] Rohatgi P K, Daoud A, Schultz B F, et al. Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 883-896. [6] Sun D X, Zhao Y Y. Static and dynamic energy absorption of Al foams produced by the sintering and dissolution process[J]. Metallurgical and Materials Transactions B, 2003, 34(1): 69-74. doi: 10.1007/s11663-003-0056-3 [7] Tao X F, Zhao Y Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles[J]. Scripta Materialia, 2009, 61(5): 461-464. doi: 10.1016/j.scriptamat.2009.04.045 [8] Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting[J]. Journal of Composite Materials, 2007, 41(17): 2105-2117. doi: 10.1177/0021998307074132 [9] Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 279-288. doi: 10.1016/j.compositesa.2008.12.006 [10] Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam[J]. Materials Science and Engineering: A, 2009, 507(1/2): 102-109. [11] Mondal D P, Goel M D, Das S. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam[J]. Materials and Design, 2009, 30(4): 1268-1274. doi: 10.1016/j.matdes.2008.06.059 [12] San Marchi C, Cao F, Kouzeli M, et al. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum[J]. Materials Science and Engineering: A, 2002, 337(1/2): 202-211. [13] Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering and Science, 1981, 21(15): 1010-1014. doi: 10.1002/pen.760211505 期刊类型引用(11)
1. 朱江涛,赵杏. 纤维增强树脂基复合材料筋/拉索数值模拟研究综述. 复合材料学报. 2024(04): 1653-1671 . 百度学术
2. 叶海旺,余梦豪,吴家鹏,欧阳枧,龙桂华,雷涛,王炯辉,赵明生,余红兵. 轻轨结构在隧洞掘进爆破下的响应数值模拟. 工程爆破. 2024(02): 49-57 . 百度学术
3. 王志亮,余浪浪. 深部大理岩真三轴力学特性离散元和有限差分耦合分析. 爆炸与冲击. 2024(07): 126-138 . 本站查看
4. 陈美多,张祥林,袁良柱,赵巨岩,王鹏飞,马昊,徐松林. 岩石界面的动态剪切扩散行为. 爆炸与冲击. 2024(08): 46-61 . 本站查看
5. 陈猛,田矣涵,崔秀文,张通. 岩石-钢纤维混凝土复合层动态抗压强度计算模型. 岩土工程学报. 2024(10): 2229-2236 . 百度学术
6. 周子清,王鹏飞,徐松林. 基于Tersoff势的晶格中波动传播. 爆炸与冲击. 2024(09): 36-49 . 本站查看
7. 苗春贺,徐松林,马昊,袁良柱,陆建华,王鹏飞. 递进式凸轮加载的中等应变率实验技术. 爆炸与冲击. 2023(03): 128-137 . 本站查看
8. 田珂. 二元信息挖掘多模型融合异常弹着靶速度预测. 弹道学报. 2023(02): 102-110 . 百度学术
9. 刘泽军,赵柳,李艳,褚颜贵. 不同长径比聚乙烯醇(PVA)/高延性纤维增强水泥基复合材料(ECC)动态压缩性能. 复合材料学报. 2023(12): 6859-6870 . 百度学术
10. 刘锋,李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应. 爆炸与冲击. 2022(09): 125-140 . 本站查看
11. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 . 百度学术
其他类型引用(11)
-