包覆板材料为陶瓷时平板装药的防护性能

李如江 韩宏伟 孙素杰 刘天生

李如江, 韩宏伟, 孙素杰, 刘天生. 包覆板材料为陶瓷时平板装药的防护性能[J]. 爆炸与冲击, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05
引用本文: 李如江, 韩宏伟, 孙素杰, 刘天生. 包覆板材料为陶瓷时平板装药的防护性能[J]. 爆炸与冲击, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05
Li Ru-jiang, Han Hong-wei, Sun Su-jie, Liu Tian-sheng. Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers[J]. Explosion And Shock Waves, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05
Citation: Li Ru-jiang, Han Hong-wei, Sun Su-jie, Liu Tian-sheng. Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers[J]. Explosion And Shock Waves, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05

包覆板材料为陶瓷时平板装药的防护性能

doi: 10.11883/1001-1455(2014)01-0047-05
详细信息
    作者简介:

    李如江(1978—), 男, 博士, 副教授

    通讯作者:

    Hu Ling-ling, hulingl@mail.sysu.edu.cn

  • 中图分类号: O383.3

Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers

  • 摘要: 运用口径36mm的精密成型装药实验,研究了等效厚度相同的碳化硅和氧化铝陶瓷平板装药的防护性能,并与包覆材料为钢的平板装药进行了对比。运用LS-DYNA3D软件,对平板装药与聚能装药的作用过程进行了三维数值模拟。实验结果显示,对于此结构的平板装药,碳化硅和氧化铝陶瓷平板装药使聚能装药侵彻能力分别下降了88%和82%,优于钢板的防护性能。数值模拟结果显示,陶瓷包覆板从边缘至中心依次出现断裂和粉碎现象,钢板与射流后部作用为断续干扰,而陶瓷板为连续干扰。
  • 图  1  实验装置示意图

    Figure  1.  Experimental setup

    图  2  实验结果

    Figure  2.  Comparisons of the experimental results

    图  3  碳化硅、氧化铝和钢反应装甲与射流的作用过程的模拟结果

    Figure  3.  Comparison of the interaction process between shaped charge jets and ERA with SiC, Al2O3 and steel plates

    表  1  不同包覆板材料平板装药的防护性能

    Table  1.   Protection performance of ERA with different plate materials

    包覆板材料 a/mm b/mm c/mm l/mm
    SiC 15 10 6 麻点
    45 steel 25 10 10 2~3
    Al2O3 25 11 9 麻点
    下载: 导出CSV

    表  2  紫铜和45钢的计算参数

    Table  2.   Calculating parameters for the copper and 45 steel

    材料 ρ/(g·cm-3) A/GPa B/GPa n C m Tm/K Tr/K
    Fe 7.85 0.792 0.510 0.26 0.014 1.03 1 793 294
    Cu 8.96 0.090 0.292 0.31 0.025 1.09 1 356 294
    下载: 导出CSV

    表  3  陶瓷的计算参数[10]

    Table  3.   Calculating parameters for SiC and AL2O3

    材料 G/GPa A B C M N T σc/GPa σHEL/GPa pHEL/GPa K1 K2 K3 β D1 D2 σf, max/GPa
    SiC 183.00 0.96 0.35 0 1.0 0.65 0.37 14.57 13 5.90 204.8 0 0 1.0 0.480 0.480 1.0
    Al2O3 90.16 0.35 0.31 0 0.6 0.60 0.20 2.79 2 2.79 131.0 0 0 1.0 0.005 1.00 1.0
    下载: 导出CSV
  • [1] Held M. Protection device against projectiles, especially shaped charges: Deutsches, 2358277[P]. 1973.
    [2] Held M. Stopping power of explosive reactive armors against different shaped charge diameters or at different angles[J]. Propellants, Explosives, Pyrotechnics, 2001, 26: 97-104. doi: 10.1002/1521-4087(200104)26:2<97::AID-PREP97>3.0.CO;2-A
    [3] Held M. Momentum theory of explosive reactive armours[J]. Propellants, Explosives, Pyrotechnics, 2001, 26: 91-96. doi: 10.1002/1521-4087(200104)26:2<91::AID-PREP91>3.0.CO;2-9
    [4] Held M. Disturbance of shaped charge jets by bulging armour[J]. Propellants, Explosives, Pyrotechnics, 2001, 26: 191-195. doi: 10.1002/1521-4087(200110)26:4<191::AID-PREP191>3.0.CO;2-C
    [5] 毛东方, 李向东, 宋柳丽. V型夹层炸药对射流干扰的数值模拟[J].爆炸与冲击, 2008, 28(1): 86-91. doi: 10.3321/j.issn:1001-1455.2008.01.015

    Mao Dong-fang, Li Xiang-dong, Song Liu-li. Numeriacal simulation of disturbance by sandwich explosive on jet[J]. Explosion and Shock Waves, 2008, 28(1): 86-91. doi: 10.3321/j.issn:1001-1455.2008.01.015
    [6] Kaufmann H, Koch A. Terminal ballistic effects of low density materials used as confinement plates for explosive reactive armor[C]//Proceedings of the 22nd International Symposium on Ballistics. Vancouver, Canada, 2005: 405-412.
    [7] Hazell P J, Lawrence T, Stennett C. The defeat of shaped charge jets by explosively driven ceramic and glass plates[J]. International Journal of Applied Ceramic Technology, 2012, 9(2): 382-392. doi: 10.1111/j.1744-7402.2011.02656.x
    [8] 王玲, 郑威, 辛培训, 等.纤维增强复合材料的制备及防护性能研究[J].工程塑料应用, 2010, 38(10): 27-30. doi: 10.3969/j.issn.1001-3539.2010.10.006

    Wang Ling, Zheng Wei, Xin Pei-xun, et al. Study on preparation and ballistic resistance of fiber reinforced composite[J]. Engineering Plastics Application, 2010, 38(10): 27-30. doi: 10.3969/j.issn.1001-3539.2010.10.006
    [9] Lee E L, Tarver C M. Phenomenological model of initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12): 2362-2369. doi: 10.1063/1.862940
    [10] Livermore Software Technology Corporation. LS-DYNA keyword user's manual[M]. California: Livermore Software Technology Corporation, 2001.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  3094
  • HTML全文浏览量:  288
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-29
  • 修回日期:  2012-08-20
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回