Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens
-
摘要: 利用大直径霍普金森压杆径向冲击中心直裂纹巴西圆盘(CSTBD)砂岩试样,完成Ⅰ型动态断裂实验。利用实验-数值方法确定了不同动态加载率下砂岩的动态起裂韧度;结合实验-数值法以及普适函数确定了不同裂纹扩展速度下砂岩的动态扩展韧度。为验证普适函数法和实验-数值法的有效性,将实验所得结果与其他学者的研究成果进行了对比分析,得到了相同的规律。所确定的岩石动态起裂韧度和动态扩展韧度分别随动态加载率的提高和裂纹扩展速度的提高而增加。Abstract: The CSTBD (cracked straight-through Brazilian disc) specimens of sandstone were diametrically impacted by the split Hopkinson pressure bar of large diameter in the mode-Ⅰ (opening mode) rock dynamic fracture test.The experimental-numerical method was employed to obtain the dynamic initiation toughness under different dynamic loading rates; and based on some theoretical analysis and reasonable simplification, the experimental-numerical method and universal function were employed to obtain the dynamic propagation toughness with different crack velocities.In order to verify the validity of the universal function and the experimental-numerical method, comparisons with well-established references of concern were made, and our results present the same law of phenomena as those derived from other researchers.Increases in the dynamic initiation toughness and the dynamic propagation toughness were observed with increasing dynamic loading rate and crack tip speed, respectively.
-
1. 实验过程
1.1 试样制备
1.2 实验装置
1.3 实验数据的处理
2. 普适函数和动态断裂准则
3. 结果与讨论
3.1 动态断裂韧度的确定
3.2 起裂韧度与动态加载率的关系
3.3 扩展断裂韧度与裂纹扩展速度的关系
4. 结论
-
表 1 CSTBD试样的实验数据
Table 1. Experimental data of the CSTBD specimens
试样 tf/μs tp/μs t′f/μs tf-p/μs va/(m·s-1) k(va) CSTBD-1-3 143.7 170.9 171.5 27.2 367.6 0.799 CSTBD-1-4 134.0 158.5 168.2 24.5 408.1 0.775 CSTBD-2-1 129.4 154.1 149.1 24.7 404.9 0.777 CSTBD-2-2 127.6 152.1 153.4 24.5 408.1 0.775 CSTBD-2-3 132.2 160.8 162.4 28.6 349.7 0.810 CSTBD-3-1 131.3 160.6 169.1 29.3 341.3 0.815 CSTBD-3-2 125.1 150.0 164.5 24.9 401.6 0.779 CSTBD-3-3 122.7 148.8 166.1 26.1 383.1 0.790 表 2 CSTBD试样的计算结果
Table 2. Results of the CSTBD specimens
试样 KⅠ0/
(MPa·m1/2)KⅠCd/
(MPa·m1/2)KⅠCD/
(MPa·m1/2)KⅠCD[9]/
(MPa·m1/2)e/
%˙KI/
(GPa·m1/2·s-1)CSTBD-1-3 17.192 13.736 12.766 12.763 0.02 88.84 CSTBD-1-4 16.094 12.473 10.318 10.117 1.99 77.00 CSTBD-2-1 21.619 16.798 16.301 16.745 -2.65 125.97 CSTBD-2-2 23.250 18.019 17.812 17.326 2.81 139.59 CSTBD-2-3 17.926 14.520 14.244 14.391 -1.02 107.75 CSTBD-3-1 19.005 15.489 17.060 17.098 -0.22 129.93 CSTBD-3-2 19.175 14.937 14.372 14.345 0.19 114.88 CSTBD-3-3 18.553 14.657 13.151 12.958 1.49 107.18 e=(KⅠCD-KⅠCD[9])/KⅠCD[9]。 -
[1] 范天佑.应用断裂动力学基础[M].北京: 北京理工大学出版社, 2006: 38-43, 108-130. [2] 王自强, 陈少华.高等断裂力学[M].北京: 科学出版社, 2009: 271-324. [3] Jiang F C, Vecchio K S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(6): 060802-1-060802-39. doi: 10.1115/1.3124647 [4] 陈德兴, 胡时胜, 张守保, 等.大尺寸Hopkinson压杆及其应用[J].实验力学, 2005, 20(3): 398-402.Chen De-xing, Hu Shi-sheng, Zhang Shou-bao, et al. Large dimension Hopkinson pressure bar and its application[J]. Journal of Experimental Mechanics, 2005, 20(3): 398-402. [5] 李世愚, 和泰名, 尹祥础, 等.岩石断裂力学导论[M].合肥: 中国科学技术大学出版社, 2010: 187-194. [6] Zhou J, Wang Y, Xia Y M. Mode-Ⅰ fracture toughness of PMMA at high loading rates[J]. Journal of Materials Science, 2006, 41: 8363-8366. doi: 10.1007/s10853-006-0980-0 [7] 张盛, 王启智, 谢和平.岩石动态断裂韧度的尺寸效应[J].爆炸与冲击, 2008, 28(6): 544-551. doi: 10.3321/j.issn:1001-1455.2008.06.011Zhang Sheng, Wang Qi-zhi, Xie He-ping. Size effect of rock dynamic fracture toughness[J]. Explosion and Shock Waves, 2008, 28(6): 544-551. doi: 10.3321/j.issn:1001-1455.2008.06.011 [8] Wang Q Z, Feng F, Ni M, et al. Measurement of mode Ⅰ and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar[J]. Engineering Fracture Mechanics, 2011, 78: 2455-2469. doi: 10.1016/j.engfracmech.2011.06.004 [9] 苟小平, 杨井瑞, 王启智.基于P-CCNBD试样的岩石动态断裂韧度测试方法[J].岩土力学, 2013, 34(9): 2449-2459.Gou Xiao-ping, Yang Jing-rui, Wang Qi-zhi. Test method for determining rock dynamic fracture toughness using P-CCNBD specimens[J]. Rock and Soil Mechanics, 2013, 34(9): 2449-2459. [10] Owen D M, Zhuang S, Rosakis A J, et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets[J]. International Journal of Fracture, 1998, 90: 153-174. doi: 10.1023/A:1007439301360 [11] Bertram A, Kalthoff J F. Crack propagation toughness of rock for the range from low to very high crack speeds[J]. Key Engineering Materials, 2003, 251/252: 423-430. doi: 10.4028/www.scientific.net/KEM.251-252.423 [12] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅰ. Constant rate of extension[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 129-140. doi: 10.1016/0022-5096(72)90006-3 [13] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅱ. Non-uniform rate of extension[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 141-152. doi: 10.1016/0022-5096(72)90007-5 [14] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅲ. Stress wave loading[J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47-61. doi: 10.1016/0022-5096(73)90029-X [15] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅳ. Obliquely incident stress wave pulse[J]. Journal of the Mechanics and Physics of Solids, 1974, 22(3): 137-146. doi: 10.1016/0022-5096(74)90021-0 [16] Kostrov B V. On the crack propagation with variable velocity[J]. International Journal of Fracture, 1975, 11(1): 47-56. doi: 10.1007/BF00034712 [17] Burridge R. An influence function for the intensity factor in tensile fracture[J]. International Journal of Engineering Science, 1976, 14: 725-734. doi: 10.1016/0020-7225(76)90028-8 [18] Freund L B. Dynamic fracture mechanics[M]. Cambridge: Cambridge University Press, 1990: 296-432. [19] Bhat H S, Rosakis A, Sammis C G. A micromechanics based constitutive model for brittle failure at high strain rate[J]. Journal of Applied Mechanics, 2012, 79: 031016-1-12. doi: 10.1115/1.4005897 [20] Ren X D, Li J. Dynamic fracture in irregularly structured systems[J]. Physical Review E, 2012, 85: 055102-1-4. doi: 10.1103/PhysRevE.85.055102 [21] 谢和平, 高峰, 周宏伟, 等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报, 2003, 23(4): 1-9.Xie He-ping, Gao Feng, Zhou Hong-wei, et al. Fractal fracture and fragmentation in rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1-9. [22] Zhou Z L, Li X B, Liu A H, et al. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 697-701. doi: 10.1016/j.ijrmms.2010.09.006 [23] 李为民, 许金余.大直径分离式霍普金森压杆试验中的波形整形技术研究[J].兵工学报, 2009, 30(3): 350-355. doi: 10.3321/j.issn:1000-1093.2009.03.019Li Wei-min, Xu Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3): 350-355. doi: 10.3321/j.issn:1000-1093.2009.03.019 [24] Gomez J T, Shukla A, Sharma A. Static and dynamic behavior of concrete and granite in tension with damage[J]. Theoretical and Applied Fracture Mechanics, 2001, 36: 37-49. doi: 10.1016/S0167-8442(01)00054-4 [25] 冯峰, 王启智.大理岩Ⅰ-Ⅱ复合型动态断裂的实验研究[J].岩石力学与工程学报, 2009, 28(8): 1579-1586. doi: 10.3321/j.issn:1000-6915.2009.08.008Feng Feng, Wang Qi-zhi. An experimental study of mixed mode Ⅰ-Ⅱ dynamic fracture of marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1579-1586. doi: 10.3321/j.issn:1000-6915.2009.08.008 [26] 刘再华, 解德, 王元汉, 等.工程断裂动力学[M].武汉: 华中理工大学出版社, 1996: 38-41. [27] Ravi-Chandar K. Dynamic Fracture[M]. Elsevier, 2004: 49-69. [28] Chen Y M, Wilkins M L. Numerical analysis of dynamic crack problem[J]. Engineering Fracture Mechanics, 1975, 7: 635-660. [29] 李旭东, 张鹭, 马渊, 等.基于有限单元法对动态应力强度因子进行数值计算的研究[J].振动与冲击, 2011, 30(1): 223-226. doi: 10.3969/j.issn.1000-3835.2011.01.049Li Xu-dong, Zhang Lu, Ma Yuan, et al. Numerical calculation of dynamic stress intensity factor based on finite element method[J]. Journal of Vibration and Shock, 2011, 30(1): 223-226. doi: 10.3969/j.issn.1000-3835.2011.01.049 [30] Leyden: Noordhoff International Publishing, 1977: 1-58. [31] Zhang Z X, Kou S Q, Yu J, et al. Effect of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 597-611. doi: 10.1016/S0148-9062(99)00031-5 [32] Rosakis A J. Explosion at the Parthenon: Can we pick up the pieces?[R]. GALCIT SM report 99-3, 1999. 期刊类型引用(17)
1. 杨秀锟,谢秦,刘希灵,李生相,曾媛. Ⅱ型加载条件下页岩断裂行为的预测研究. 实验力学. 2023(01): 109-118 . 百度学术
2. 周磊,朱哲明,王蒙,周昌林,董玉清,应鹏. 致密砂岩巷道模型试件动态起裂及止裂全过程分析. 爆炸与冲击. 2019(09): 128-138 . 本站查看
3. 万端莹,朱哲明,刘瑞峰,刘邦,李剑飞. 基于RPC试件的爆炸应力波作用下I型裂纹扩展行为的研究. 岩石力学与工程学报. 2019(12): 2478-2490 . 百度学术
4. 周磊,朱哲明,董玉清,应鹏. 冲击加载下巷道内裂纹的扩展特性及破坏行为. 爆炸与冲击. 2018(04): 785-794 . 本站查看
5. 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究. 岩石力学与工程学报. 2018(06): 1359-1370 . 百度学术
6. 施泽彬,朱哲明,汪小梦,王雄. Ⅰ型裂纹中低速冲击荷载下起裂韧度测试新方法. 爆炸与冲击. 2018(06): 1247-1254 . 本站查看
7. 李炼,罗林,吴礼舟,王启智. 岩石偏心圆孔单裂纹平台圆盘的动态裂纹扩展与止裂. 爆炸与冲击. 2018(06): 1218-1230 . 本站查看
8. 应鹏,朱哲明,周磊,董玉清,王雄. 中低速冲击下Ⅰ型裂纹的动态断裂韧度研究. 煤炭学报. 2017(S2): 338-345 . 百度学术
9. 周磊,朱哲明,董玉清,应鹏. 中低速冲击载荷下巷道内裂纹的动态响应. 岩石力学与工程学报. 2017(06): 1363-1372 . 百度学术
10. 周妍,张财贵,王启智. 用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度. 振动与冲击. 2017(05): 37-47 . 百度学术
11. 李炼,杨丽萍,曹富,王启智. 冲击加载下的砂岩动态断裂全过程的实验和分析. 煤炭学报. 2016(08): 1912-1922 . 百度学术
12. 罗毅,任利,谢凌志,李存宝,王俊,高超. 岩石Ⅰ/Ⅱ复合断裂韧度测试的单边切槽深梁试件:数值分析与标定. 岩石力学与工程学报. 2016(S2): 3633-3643 . 百度学术
13. 王启智. 对圆盘、圆环和圆孔研究与应用的感悟. 力学与实践. 2015(03): 372-376 . 百度学术
14. 张财贵,周妍,杨井瑞,王启智. 用SHPB径向冲击边裂纹平台圆环(ECFR)的动态断裂实验. 煤炭学报. 2015(05): 1037-1046 . 百度学术
15. 杨井瑞,张财贵,周妍,朱哲明,王启智. 用SCDC试样测试岩石动态断裂韧度的新方法. 岩石力学与工程学报. 2015(02): 279-292 . 百度学术
16. 王蒙,朱哲明,谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究. 岩石力学与工程学报. 2015(12): 2474-2485 . 百度学术
17. 张财贵,周妍,杨井瑞,王启智. 用边裂纹平台圆环试样测试岩石的Ⅰ型动态断裂韧度. 水利学报. 2014(06): 691-700 . 百度学术
其他类型引用(11)
-