微结构对多孔材料应变率效应影响的机理研究

王鹏飞 徐松林 李志斌 胡时胜

王鹏飞, 徐松林, 李志斌, 胡时胜. 微结构对多孔材料应变率效应影响的机理研究[J]. 爆炸与冲击, 2014, 34(3): 285-291. doi: 10.11883/1001-1455(2014)03-0285-07
引用本文: 王鹏飞, 徐松林, 李志斌, 胡时胜. 微结构对多孔材料应变率效应影响的机理研究[J]. 爆炸与冲击, 2014, 34(3): 285-291. doi: 10.11883/1001-1455(2014)03-0285-07
Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. Effect of micro-structure on the strain rate of cellular materials[J]. Explosion And Shock Waves, 2014, 34(3): 285-291. doi: 10.11883/1001-1455(2014)03-0285-07
Citation: Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. Effect of micro-structure on the strain rate of cellular materials[J]. Explosion And Shock Waves, 2014, 34(3): 285-291. doi: 10.11883/1001-1455(2014)03-0285-07

微结构对多孔材料应变率效应影响的机理研究

doi: 10.11883/1001-1455(2014)03-0285-07
基金项目: 国家自然科学基金项目(90916026)
详细信息
    作者简介:

    王鹏飞(1985—), 男, 博士

    通讯作者:

    Xu Song-lin, slxu99@ustc.edu.cn

  • 中图分类号: O347.3

Effect of micro-structure on the strain rate of cellular materials

  • 摘要: 通过数值模拟讨论了圆环结构对多孔材料应变率效应的影响,计算结果表明,圆环结构与折板结构一样,同样存在结构的屈曲失稳,因此也具有应变率效应。只是其应变率效应不如折板结构敏感,在小应变下的率效应不明显,在后屈曲失稳阶段率效应较为明显。另外,对于壁厚较薄的圆环结构,加载过程中更容易出现结构的屈曲失稳,此时微结构所引起的应变率效应较明显。壁厚较厚的圆环结构,微结构引起的应变率效应则不显著。通过蜂窝结构的模型更清楚地揭示了微结构对多孔材料变形过程的影响。
  • 图  1  2种类型的率敏感结构[5]

    Figure  1.  Two types of velocity sensitive structures[5]

    图  2  准静态和动态加载模型

    Figure  2.  Load models under quasi-static and dynamic

    图  3  圆环结构的名义应力应变曲线

    Figure  3.  Normal stress-strain curves of ring structure

    图  4  圆环结构的变形过程图(ε≤0.45)

    Figure  4.  Deformation process of ring structure(ε≤0.45)

    图  5  不同应变率下的屈曲失稳模式(ε≈0.72)

    Figure  5.  Buckling models under different strain-rate(ε≈0.72)

    图  6  圆环结构的变形过程图(H=0.5 mm,D=10 mm,网格尺寸0.05 mm)

    Figure  6.  Deformation process of ring structure(H=0.5 mm, D=10 mm, grid size 0.05 mm)

    图  7  不同壁厚的圆环变形过程图(=10 s-1

    Figure  7.  Deformation process with different wall thickness(=10 s-1)

    图  8  圆形蜂窝结构的SHPB模型

    Figure  8.  SHPB model of circular honeycomb

    图  9  圆环蜂窝的应变率效应

    Figure  9.  Strain-rate effect of circular honeycomb

  • [1] Yang L M, Shim V. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2): 129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [2] 胡时胜, 王悟, 潘艺, 等.泡沫材料的应变率效应[J].爆炸与冲击, 2003, 23(1): 13-18. doi: 10.3321/j.issn:1001-1455.2003.01.003

    Hu Shi-sheng, Wang Wu, Pan Yi, et al. Strain rate effect on the properties foam materials[J]. Explosion and Shock Waves, 2003, 23(1): 13-18. doi: 10.3321/j.issn:1001-1455.2003.01.003
    [3] 王永胜, 左孝青, 尹志其, 等.应变率对泡沫铝压缩性能的影响[J].材料导报, 2009, 23(2): 47-52. doi: 10.3321/j.issn:1005-023X.2009.02.015

    Wang Yong-sheng, Zuo Xiao-qing, Yin Zhi-qi, et al. Effect of strain rate on compressive property of aluminum foam[J]. Materials Review, 2009, 23(2): 47-52. doi: 10.3321/j.issn:1005-023X.2009.02.015
    [4] Lankford J, Dannemann K A. Strain rate effects in porous materials[C]//Symposium Proceeding 521, Porous and Cellular Materials for Structure Applications. Warrendale: Materials Research Society, 1998: 103-108.
    [5] Calladine C R, English R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbingstructure[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701.
    [6] Tam L L, Calladine C R. Inertia and strain-rate effects in a simple plate-structure under impact loading[J]. International Journal of Impact Engineering, 1991, 11(3): 349-377. doi: 10.1016/0734-743X(91)90044-G
    [7] Zhao H, Abdennadher S. On the strength enhancement under impact loading of square tubes made from rate insensitive metal[J]. International Journal of Solids and Structures, 2004, 41(24/25): 6677-6697.
    [8] Chen C, Lu T J, Fleck N A. Effect of imperfections on the yielding of two dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272. doi: 10.1016/S0022-5096(99)00030-7
    [9] Grenestedt J L. On interactions between imperfections in cellular solids[J]. Journal of Materials Science, 2005, 40(22): 5853-5857. doi: 10.1007/s10853-005-5019-4
    [10] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
    [11] McCullough K Y G, Fleck N A, Ashby M F. Uniaxial stress-strain behaviour of aluminium alloy foams[J]. Acta Materialia, 1999, 47(8): 2323-2330. doi: 10.1016/S1359-6454(99)00128-7
    [12] Dong X L, Gao Z Y, Yu T X. Dynamic crushing of thin-walled spheres: An experimental study[J]. International Journal of Impact Engineering, 2008, 35(8): 717-726. doi: 10.1016/j.ijimpeng.2007.11.004
    [13] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1997: 309-343.
  • 加载中
图(9)
计量
  • 文章访问数:  2896
  • HTML全文浏览量:  349
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-13
  • 修回日期:  2013-04-25
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回