碱类型对地聚合物混凝土应变率效应影响的对比研究

罗鑫 许金余 白二雷 李为民

罗鑫, 许金余, 白二雷, 李为民. 碱类型对地聚合物混凝土应变率效应影响的对比研究[J]. 爆炸与冲击, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07
引用本文: 罗鑫, 许金余, 白二雷, 李为民. 碱类型对地聚合物混凝土应变率效应影响的对比研究[J]. 爆炸与冲击, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07
Luo Xin, Xu Jin-yu, Bai Er-lei, Li Wei-min. Comparative study of the effect of the type of alkali on the strain rate effect of geopolymer concrete[J]. Explosion And Shock Waves, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07
Citation: Luo Xin, Xu Jin-yu, Bai Er-lei, Li Wei-min. Comparative study of the effect of the type of alkali on the strain rate effect of geopolymer concrete[J]. Explosion And Shock Waves, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07

碱类型对地聚合物混凝土应变率效应影响的对比研究

doi: 10.11883/1001-1455(2014)03-0340-07
基金项目: 国家自然科学基金项目(51208507, 51378497);陕西省青年科技新星项目(2013KJXX-81)
详细信息
    作者简介:

    罗鑫(1986—), 男, 博士研究生

    通讯作者:

    Luo Xin, daisy817perwit@163.com

  • 中图分类号: O347;TU528.572

Comparative study of the effect of the type of alkali on the strain rate effect of geopolymer concrete

Funds: Supported by the National Natural Science Foundation of China (51208507, 51078350)
  • 摘要: 采用经波形整形技术改进后的∅100 mm SHPB实验装置开展了强度等级均为C30的NS激发矿渣粉煤灰基地聚合物混凝土(NaOH and sodium silicate-activated slag and fly ash based geopolymer concrete,NSSFGC)和NN激发矿渣粉煤灰基地聚合物混凝土(NaOH and Na2CO3-activated slag and fly ash based geopolymer concrete,NNSFGC)的动态压缩实验,并对比分析了在冲击荷载作用下的应变率效应。结果表明:NSSFGC和NNSFGC的峰值应力均随应变率的增加而越大。这表明,GC为应变率敏感材料;在动态压缩状态下,NSSFGC和NNSFGC的应变率敏感阈值分别为51.82、28.89 s-1;GC的应变率敏感性强于普通混凝土;NN型激发剂更有利于发挥GC的整体强度特性。由此可知,NNSFGC的应变率敏感性明显强于NSSFGC。
  • 图  1  ∅100 mm SHPB实验装置

    Figure  1.  ∅100 mm SHPB experiment apparatus

    图  2  不同规格整形器下典型的入射波

    Figure  2.  Typical incident wave under different pulse shapers

    图  3  应变率时程曲线

    Figure  3.  The curves of strain rate vs time

    图  4  fd和应变率的关系

    Figure  4.  The relationship between fd and strain rates

    图  5  ξ的变化规律

    Figure  5.  The law between ξ and

    图  6  GC破坏面

    Figure  6.  Facture section of GC

  • [1] Davidovits J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(2): 429-441. doi: 10.1007/BF01904446
    [2] Luo X, Xu J, Bai E, et al. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system[J]. Construction and Building Materials, 2012, 29(4): 482-486.
    [3] D M Roy. New strong cement materials: chemically bonded ceramics[J]. Science, 1987, 235(4789): 651-658. doi: 10.1126/science.235.4789.651
    [4] Miranda J M, Fernndez-Jiménez A, Gonzlez J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research, 2005, 35(6): 1210-1217. doi: 10.1016/j.cemconres.2004.07.030
    [5] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. doi: 10.1016/j.cemconres.2004.09.002
    [6] Davidovits J. Geopolymers[J]. Journal of Thermal Analysis and Calorimetry, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
    [7] Davidovits J. Properties of geopolymer cements[C]//1st International Conference on Alkaline Cement and Concrete. Kiev, Ukraine, 1994, 1: 131-149.
    [8] Palomo A, Macias A, Blanco M T, et al. Physical, chemical and mechanical characterization of geopolymers[C]//Proceedings of the 9th International Congress on the Chemistry of Cement. New Delhi, India, 1992, 5: 505-511.
    [9] Purdon A O. The action of alkalis on blast-furnace slag[J]. Journal of the Society of Chemical Industry, 1940, 59: 191-202. doi: 10.1002/jctb.5000591202
    [10] 许金余, 李为民, 范飞林, 等.地质聚合物混凝土的冲击力学性能研究[J].振动与冲击, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011

    Xu Jin-yu, Li Wei-min, Fan Fei-lin, et al. Study on the impact mechanical properties of geopolymer concrete[J]. Journal of Vibration and Shock, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011
    [11] Mihashi H, Wittmann F H. Stochastic approach to study the influence of rate of loading on strength of concrete[M]. Wittmann: Delft University of Technology, 1980: 23-54.
    [12] Wakabayashi M, Nakamura T, Yoshida N, et al. Dynamic loading effects on the structural performance of concrete and steel materials and beams[C]//Proceeding of 7th the World Conference on Earthquake Engineering. Turkey, 1980, 6(3): 271-278.
    [13] Lok T S, Zhao P J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 54-59. doi: 10.1061/(ASCE)0899-1561(2004)16:1(54)
    [14] Li W, Xu J. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513: 145-153.
    [15] Li W, Xu J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading[J]. Materials Science and Engineering: A, 2009, 505(1): 178-186. http://www.sciencedirect.com/science/article/pii/S0921509308013567
    [16] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. doi: 10.1007/BF02411056
    [17] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. Journal of Experimental Mechanics, 2006, 21(1): 51-60.
    [18] Chen W, Lu F, Winfree N. High-strain-rate compressive behavior of a rigid polyurethane foam with various densities[J]. Experimental Mechanics, 2002, 42(1): 65-73. doi: 10.1007/BF02411053
    [19] Chen W, Frew D J, Forrestal M J, et al. Dynamic compression testing of soft materials[J]. Journal of Applied Mechanics, 2002, 69(3): 214-223. doi: 10.1115/1.1464871
    [20] 李夕兵, 古德生.岩石冲击动力学[M].长沙: 中南工业大学出版社, 1994.
    [21] 罗鑫, 许金余, 李为民, 等.应力脉冲在SHPB实验中弥散效应的数值模拟与频谱分析[J].实验力学, 2010, 25(4): 451-456.

    Luo Xin, Xu Jin-yu, Li Wei-min, et al. Numerical simulation and spectral Analysis of dispersion effect of stress pulse in SHPB tests[J]. Journal of Experimental Mechanics, 2010, 25(4): 451-456.
    [22] 王礼立.应力波基础[M].北京: 国防工业出版社, 2005: 30-74.
    [23] Bishcholff P H, Perry S H. Impact behavior of plain concrete in uniaxial compression[J]. Journal of Engineering Mechanics, 1995, 121(6): 685-693. doi: 10.1061/(ASCE)0733-9399(1995)121:6(685)
    [24] Tedesco J W, Ross C A, Kuennen S T. Experimental and numerical analysis of high strain rate splitting tensile tests[J]. ACI Materials Journal, 1993, 90(2): 162-169.
    [25] Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal, 1996, 93(3): 293-300.
  • 加载中
图(6)
计量
  • 文章访问数:  2939
  • HTML全文浏览量:  364
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-22
  • 修回日期:  2013-03-07
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回