聚氨酯泡沫铝动力学性能实验及本构模型研究

张勇 陈力 陈荣俊 谢卫红

张勇, 陈力, 陈荣俊, 谢卫红. 聚氨酯泡沫铝动力学性能实验及本构模型研究[J]. 爆炸与冲击, 2014, 34(3): 373-378. doi: 10.11883/1001-1455(2014)03-0373-06
引用本文: 张勇, 陈力, 陈荣俊, 谢卫红. 聚氨酯泡沫铝动力学性能实验及本构模型研究[J]. 爆炸与冲击, 2014, 34(3): 373-378. doi: 10.11883/1001-1455(2014)03-0373-06
Zhang Yong, Chen Li, Chen Rong-jun, Xie Wei-hong. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum[J]. Explosion And Shock Waves, 2014, 34(3): 373-378. doi: 10.11883/1001-1455(2014)03-0373-06
Citation: Zhang Yong, Chen Li, Chen Rong-jun, Xie Wei-hong. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum[J]. Explosion And Shock Waves, 2014, 34(3): 373-378. doi: 10.11883/1001-1455(2014)03-0373-06

聚氨酯泡沫铝动力学性能实验及本构模型研究

doi: 10.11883/1001-1455(2014)03-0373-06
基金项目: 国家自然科学基金面上项目(51378016)
详细信息
    作者简介:

    张勇(1980—), 男, 博士研究生, 讲师

    通讯作者:

    Zhang Yong, freebirdzy1980@163.com

  • 中图分类号: O347.3;TB33

Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum

Funds: Supported by the National Natural Science Foundation of China (51378016)
  • 摘要: 为了改进泡沫铝的动态吸能性能,将聚氨酯填充到开孔泡沫铝中制备成复合材料。通过霍普金森杆(SHPB)冲击实验,研究包含相对密度、应变、应变率和聚氨酯含量等影响因素的聚氨酯泡沫铝材料的动力学性能,并建立了动态本构模型。实验结果表明,聚氨酯泡沫铝的动态弹性模量与相对密度无关,屈服强度和流变应力与应变率和泡沫铝的相对密度成正比;聚氨酯泡沫铝的屈服强度与泡沫聚氨酯质量增加近似呈线性关系。所建立的动态本构模型在相对密度和应变率在一定的变化范围内与实验数据吻合较好。
  • 图  1  聚氨酯泡沫铝试件在应变率1 900 s-1下冲击前后的形状对比

    Figure  1.  Shape contrast of polyurethane foam aluminum test-pieces before and after impact at strain rate of 1 900 s-1

    图  2  不同应变率下聚氨酯泡沫铝试件的应力应变曲线

    Figure  2.  Stress-strain curves of polyurethane foam aluminum test-pieces at different strain rate

    图  3  屈服强度与聚氨酯质量分数的关系

    Figure  3.  The yield strength vs the mass of the polyurethane foam

    图  4  屈服强度与聚氨酯质量分数的数据拟合

    Figure  4.  Data fitting of yield intensity vs mass of polyurethane

    图  5  本构模型曲线与实验数据曲线对比

    Figure  5.  Constitutive model vs experimental data curves

  • [1] Li Xu-hua, Yuan Qiao-long, Wang De-ning, et al. Cross-linked polyurethane with high thermal stability and low optical loss[J]. Materials and Devices for Optical and Wireless Communications, 2006, 49(5): 405-408.
    [2] Sun Ming-cheng, Liu Fu-chun, Shi Hong-wei, et al. A study on water absorption in freestanding polyurethane films filled with nano-TiO2 pigments by capacitance measurements[J]. Acta Metallurgica Sinica, 2009, 22(1): 27-34.
    [3] Li Hai-bin, Tian Zhen, Zhang Ai-ying, et al. Synthesis and characterization of novel triblock copolymers comprising poly(tetrahydrofuran)as a central block and poly(γ-benzyl L-glutamate)s as outer blocks[J]. Frontiers of Materials Science in China, 2008, 2(1): 84-90. doi: 10.1007/s11706-008-0015-7
    [4] You Cao, Yu Jiang, Zhao Shu-lu, et al. Effect of montmorillonite on kinetics of polyurethane preparation reaction[J]. Chinese Chemical Letters, 2008, 19(1): 115-118. doi: 10.1016/j.cclet.2007.11.001
    [5] 穆建春, 习会峰, 龙志勤.不同孔隙率及孔径泡沫铝的力学与吸能特性研究[J].实验力学, 2009(3): 223-227.

    Mu Jian-chun, Xi Hui-feng, Long Zhi-qin. Study on the mechanics and energy absorb property of aluminum foam in different void rate and different aperture[J]. Experiment Mechanics, 2009(3): 223-227.
    [6] Zhang Guo-qi, Wang Bing, Ma Li, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures, 2014, 108: 304-310. doi: 10.1016/j.compstruct.2013.09.040
    [7] 赵军, 侯兴勃, 张丹.泡沫铝冲击吸能器工程设计研究[J].噪声与振动控制, 2009, 29(3): 130-131, 151. doi: 10.3969/j.issn.1006-1355.2009.03.037

    Zhao Jun, Hou Xing-bo, Zhang Dan. Engineering design and study on the impact and energy absorb implement of aluminum foam[J]. Yawp and Vibraten Control, 2009, 29(3): 130-131, 151. doi: 10.3969/j.issn.1006-1355.2009.03.037
    [8] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
    [9] Dannemann K A, Lankford J J. High strain rate compression of closed-cell aluminium foams[J]. Material Science and Engineering: A, 2000, 293(1/2): 157-164.
    [10] 王永刚, 胡时胜, 王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J].爆炸与冲击, 2003, 23(6): 516-522. doi: 10.3321/j.issn:1001-1455.2003.06.006

    Wang Yong-gang, Hu Shi-sheng, Wang Li-li. Shock attenuation in aluminum foams under explosion loading[J]. Explosion and Shock Waves, 2003, 23(6): 516-522. doi: 10.3321/j.issn:1001-1455.2003.06.006
    [11] 王志华, 曹晓卿, 马宏伟, 等.泡沫铝合金动态力学性能实验研究[J].爆炸与冲击, 2006, 26(1): 46-52. doi: 10.3321/j.issn:1001-1455.2006.01.008

    Wang Zhi-hua, Cao Xiao-qing, Ma Hong-wei, et al. Experimental studies on the dynamic compressive properties of open celled aluminum alloy foams[J]. Explosion and Shock Waves, 2006, 26(1): 46-52. doi: 10.3321/j.issn:1001-1455.2006.01.008
    [12] 卢子兴, 高镇同, 朱汪鲲, 等.聚氨酯泡沫塑料的强度与断裂韧性[J].力学学报, 2000, 32(5): 625-632.

    Lu Zi-xing, Gao Zhen-tong, Zhu Wang-kun, et al. Investigation on the fracture properties of polyurethane rigid foam plastics[J]. Mechanics Transaction, 2000, 32(5): 625-632.
    [13] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures∥Proceedings of the 7th International Symposium on Ballistics[C]. The Netherlands: The Hague, 1983: 541-547.
    [14] Sherwood J A, Frost C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polymer Engineering & Science, 1992, 32(16): 1138-1146. doi: 10.1002/pen.760321611/citedby
    [15] Hanssen A G, Hopperstad O S, Langseth M, et al. Validation of constitutive models applicable to aluminium foams[J]. International Journal of Mechanical Sciences, 2002, 44(2): 359-406. doi: 10.1016/S0020-7403(01)00091-1
    [16] 胡玲玲, 黄小清, 张红, 等.泡沫铝材料一维粘塑性本构关系[J].华南理工大学学报, 2004, 32(4): 87-90. doi: 10.3321/j.issn:1000-565X.2004.04.020

    Hu Ling-ling, Huang Xiao-qing, Zhang Hong, et al. One dimension viscoplasticity constitutive relationship of aluminum foam material[J]. South China Science and Engineering Transaction, 2004, 32(4): 87-90. doi: 10.3321/j.issn:1000-565X.2004.04.020
    [17] 胡时胜, 刘剑飞, 王悟.硬质聚氨酯泡沫塑料本构关系的研究[J].力学学报, 1998, 30(2): 151-156. doi: 10.3321/j.issn:0459-1879.1998.02.004

    Hu Shi-sheng, Liu Jian-fei, Wang Wu. Study on the constitutive relationship of horniness polyurethane foam[J]. Mechanics Transaction, 1998, 30(2): 151-156. doi: 10.3321/j.issn:0459-1879.1998.02.004
  • 加载中
图(5)
计量
  • 文章访问数:  3034
  • HTML全文浏览量:  312
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-13
  • 修回日期:  2013-04-27
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回