弹靶尺寸对陶瓷/金属复合装甲防护性能的影响

迟润强 AhmadSerjouei 范峰 IdapalapatiSridhar

迟润强, AhmadSerjouei, 范峰, IdapalapatiSridhar. 弹靶尺寸对陶瓷/金属复合装甲防护性能的影响[J]. 爆炸与冲击, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07
引用本文: 迟润强, AhmadSerjouei, 范峰, IdapalapatiSridhar. 弹靶尺寸对陶瓷/金属复合装甲防护性能的影响[J]. 爆炸与冲击, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07
Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07
Citation: Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07

弹靶尺寸对陶瓷/金属复合装甲防护性能的影响

doi: 10.11883/1001-1455(2014)05-0594-07
详细信息
    作者简介:

    迟润强(1979—), 男, 博士

  • 中图分类号: O385

Geometrical effects on performances of ceramic/metal armors impacted by projectiles

  • 摘要: 利用Autodyn软件开展数值模拟工作,对陶瓷/金属复合装甲的防护性能与弹靶尺寸的关系进行研究。首先,建立二维轴对称SPH-Lagrange模型,并利用实验数据验证模型有效性;在此基础上对不同几何参数的弹靶撞击进行数值模拟,分析靶板厚度、靶板平面尺寸、子弹长度等对氧化铝陶瓷/铝合金复合装甲弹道极限速度的影响规律。然后,通过量纲分析,提出装甲弹道极限速度与弹靶几何参数的量纲一关系式,并在数值模拟结果的基础上建立一个装甲弹道极限速度的经验公式。
  • 图  1  二维轴对称数值模型

    Figure  1.  Two-dimensional axisymmetric numerical model

    图  2  APDS子弹侵彻氧化铝陶瓷/铝合金复合装甲的过程

    Figure  2.  The process of APDS impacting alumina/aluminum armor

    图  3  复合装甲弹道极限速度随T1/d比值变化关系

    Figure  3.  Variation of ballistic limit velocity in composite armor with the ratio of T1/d

    图  4  复合装甲弹道极限速度随T2/d比值变化关系

    Figure  4.  Variation of ballistic limit velocity in composite armor with the ratio of T2/d

    图  5  单层装甲弹道极限速度随T1/d比值变化关系

    Figure  5.  Variation of ballistic limit velocity in single plate with the ratio of T1/d

    图  6  单层装甲弹道极限速度随T2/d比值变化关系

    Figure  6.  Variation of ballistic limit velocity in single plate with the ratio of T2/d

    图  7  复合装甲弹道极限速度随L/d比值变化关系

    Figure  7.  Variation of ballistic limit velocity in composite armor with the ratio of L/d

    图  8  复合装甲弹道极限速度随D1/d比值变化关系

    Figure  8.  Variation of ballistic limit velocity in composite armor with the ratio of D1/d

    图  9  弹体撞击过程中陶瓷破碎锥的最大直径

    Figure  9.  Ceramic maximum fracture cone diameter in process of impacting

    图  10  具有不同D1/d值的装甲被撞击时的形态比较

    Figure  10.  Impacting mode comparison for two armors with different D1/d

    图  11  复合装甲弹道极限速度随D2/d比值变化关系

    Figure  11.  Variation of ballistic limit velocity in composite armor with the ratio of D2/d

    表  1  APDS子弹侵彻氧化铝陶瓷/铝合金复合装甲的实验与数值模拟结果[3]

    Table  1.   Experimental and simulation results for APDS impacting bi-layer alumina/aluminum armor[3]

    No T1 T2 l/mm v/(m·s-1)
    实验 数值模拟 实验 数值模拟
    1 20 15 24.0~27.0 26.1 930~960 1 012
    2 25 10 25.0 24.6 960 999
    3 25 15 24.0 23.0 939 954
    下载: 导出CSV
  • [1] 张伟, 胡德安, 韩旭, 等.陶瓷/金属复合装甲冲击响应的三维SPH法分析[J].爆炸与冲击, 2011, 31(4): 373-379.

    Zhang Wei, Hu De-an, Han Xu, et al. Three-dimensional SPH analysis of impact responses of ceramic/metal composite armors[J]. Explosion and Shock Waves, 2011, 31(4): 373-379.
    [2] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics, 1995, 116(1): 123-134. doi: 10.1006/jcph.1995.1010
    [3] Gálvez V S, Paradela L S. Analysis of failure of add-on armour for vehicle protection against ballistic impact[J]. Engineering Failure Analysis, 2009, 16(6): 1837-1845. doi: 10.1016/j.engfailanal.2008.09.007
    [4] Abrate S. Impact engineering of composite structures[M]. New York: Springer, 2011.
    [5] Johnson G R, Stryk R A, Beissel S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2002, 27(10): 997-1013. doi: 10.1016/S0734-743X(02)00030-1
    [6] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Netherlands, 1983: 541-547.
    [7] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechnics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
    [8] Clausen A H, Borvik T, Hopperstad O S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering: A, 2004, 364(1/2): 260-272.
    [9] Lee J K. Analysis of multi-layered materials under high velocity impact using CTH[D]. Ohio: Air Force Institute of Technology, 2008.
    [10] Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials[J]. AIP Conference Proceedings, 1994, 309(1): 981-984.
    [11] Anderson C E, Johnson G R, Holmquist T J. Ballistic experiments and computations of confined 99.5%AL2O3 ceramic tiles[C]//Proceeding of Fifteenth International Symposium on Ballistics. Jerusalem, Israel, 1995.
    [12] Lundberg P, Westerling L, Lundberg B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets[J]. International Journal of Impact Engineering, 1996, 18(4): 403-416. doi: 10.1016/0734-743X(95)00049-G
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  3234
  • HTML全文浏览量:  354
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-07-04
  • 刊出日期:  2014-09-25

目录

    /

    返回文章
    返回