• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

卵形弹体侵彻混凝土开坑区侵彻阻力计算

柴传国 皮爱国 武海军 黄风雷

柴传国, 皮爱国, 武海军, 黄风雷. 卵形弹体侵彻混凝土开坑区侵彻阻力计算[J]. 爆炸与冲击, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06
引用本文: 柴传国, 皮爱国, 武海军, 黄风雷. 卵形弹体侵彻混凝土开坑区侵彻阻力计算[J]. 爆炸与冲击, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06
Chai Chuan-guo, Pi Ai-guo, Wu Hai-jun, Huang Feng-lei. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion And Shock Waves, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06
Citation: Chai Chuan-guo, Pi Ai-guo, Wu Hai-jun, Huang Feng-lei. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion And Shock Waves, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06

卵形弹体侵彻混凝土开坑区侵彻阻力计算

doi: 10.11883/1001-1455(2014)05-0630-06
基金项目: 国家自然科学基金项目(11202029)
详细信息
    作者简介:

    柴传国(1986—), 男, 博士研究生

  • 中图分类号: O385

A calculation of penetration resistance during cratering for ogive-nose projectile into concrete

  • 摘要: 为了研究弹体开坑过程中,弹头表面应力的表达形式,采用高速摄影仪记录弹体在开坑区的位移和时间关系,得到卵形弹体在开坑区的速度和侵深关系。采用最小二乘法对开坑区结束时消耗的弹体动能和侵深关系进行分析,提出开坑过程中弹头表面的应力形式。计算结果表明,该应力形式能较好地描述高速条件下开坑区的侵深和速度关系。
  • 图  1  2种型号弹体结构示意图

    Figure  1.  Schematic of two kind of ogive-nose projectiles

    图  2  侵彻过程中开坑区照片

    Figure  2.  Pictures of crater region during penetration process

    图  3  弹头参量示意图

    Figure  3.  Penetration parameters of ogive-nose projectile

    图  4  最小二乘法对弹体开坑过程中耗能的拟合分析

    Figure  4.  Fitted curves of kinetic energy decrease during cratering

    图  5  OP2型弹开坑区侵彻速度和侵深的关系

    Figure  5.  Relation between penetration velocity and penetration depth during cratering

    图  6  OP5型弹开坑区速度和侵深的关系

    Figure  6.  Relation between penetration velocity and penetration depth during cratering

    表  1  开坑区在侵彻过程中的数据

    Table  1.   Experimental data of crater region during penetration process

    zc/m v/(m·s-1) zc/m v/(m·s-1)
    OP2(Ⅰ) OP2(Ⅱ) OP2(Ⅲ) OP2(Ⅰ) OP2(Ⅱ) OP2(Ⅲ) OP5(Ⅰ) OP5(Ⅱ) OP5(Ⅲ) OP5(Ⅰ) OP5(Ⅱ) OP5(Ⅲ)
    0 0 0 431.2 607.6 431.2 0 0 0 419.3 608.3 780.0
    0.020 0.026 0.020 427.2 599.2 427.2 0.018 0.032 0.016 416.2 601.3 779.9
    0.040 0.061 0.040 418.6 583.2 418.6 0.041 0.064 0.034 412.9 581.2 771.1
    0.060 0.094 0.060 410.7 568.5 410.7 0.065 0.094 0.052 406.0 569.5 749.5
    0.078 0.124 0.078 397.1 550.0 397.1 0.087 0.124 0.070 398.0 560.6 734.7
    0.097 0.097 383.0 383.0 0.109 0.153 0.087 385.3 537.3 720.9
    0.115 0.115 378.1 378.1 0.130 0.104 972.0 707.0
    0.132 0.132 363.6 363.6 0.151 0.120 354.6 692.9
    0.136 678.5
    0.152 663.8
    下载: 导出CSV

    表  2  最小二乘法拟合用的数据

    Table  2.   Parameters for least square fitting

    OP2 OP5
    zc/m vs/(m·s-1) vc/(m·s-1) ΔEi/kJ zc/m vs/(m·s-1) v/(m·s-1)c ΔEi/kJ
    0.132 431.2 363.6 37.610 0.151 419.3 354.6 35.050
    0.124 607.6 550.0 46.674 0.153 608.3 537.3 56.936
    0.126 767.7 661.5 106.247 0.152 780.0 663.8 117.439
    下载: 导出CSV
  • [1] Warren T L, Hanchak S J, Poormon K L. Penetration of limestone targets by ogive-nosed VAR 4340steel penetrators at oblique angles: Experiments and simulations[J]. International Journal of Impact Engineering, 2004, 30(10): 1307-1331. doi: 10.1016/j.ijimpeng.2003.09.047
    [2] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose penetrator into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4
    [3] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel penetrators[J]. International Journal of Impact Engineering, 1996, 18(5): 465-476. doi: 10.1016/0734-743X(95)00048-F
    [4] Frew D J, Forrestal M J, Hanchak S J. Penetration experiments with limestone targets and ogive-nose steel penetrators[J]. ASME Journal of Applied Mecheanics, 2000, 67(4): 841-845. doi: 10.1115/1.1331283
    [5] Chen Xiao-wei, Fan Shou-chang, Li Qing-ming. Oblique and normal perforation of concrete targets by a rigid penetrator[J]. International Journal of Impact Engineering, 2004, 30(6): 617-637. doi: 10.1016/j.ijimpeng.2003.08.003
    [6] 马爱娥, 黄风雷.弹体斜侵彻钢筋混凝土的试验研究[J].北京理工大学学报, 2007, 27(6): 482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004

    Ma Ai-e, Huang Feng-lei. Experimental research on oblique penetration into reinforced concrete[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004
    [7] 吕中杰, 徐钰巍, 黄风雷.弹体斜侵彻混凝土过程中的方向偏转[J].兵工学报, 2009, 30(增刊2): 301-304. http://www.cnki.com.cn/article/cjfdtotal-bigo2009s2065.htm

    LüZhong-Jie, Xu Yu-wei, Huang Feng-lei. Transverse deflection of projectile obliquely penetrating into concrete[J]. Acta Armamentarii, 2009, 30(Suppl 2): 301-304. http://www.cnki.com.cn/article/cjfdtotal-bigo2009s2065.htm
  • 期刊类型引用(11)

    1. 张丁山,张博,付良,徐笑,李鹏飞. 弹体尾部斜锥面形状对侵彻偏转的影响. 高压物理学报. 2024(01): 145-154 . 百度学术
    2. 李鹏程,张先锋,王桂吉,刘闯,刘均伟,邓宇轩,盛强. 弹体正侵彻混凝土靶动态开坑作用过程. 爆炸与冲击. 2023(09): 43-59 . 本站查看
    3. 张丁山,全嘉林,付良,张博,徐笑. 侵彻弹体尖卵形头部形状对偏转力矩的影响. 火炸药学报. 2023(09): 834-839 . 百度学术
    4. 李明,王可慧,邹慧辉,段建,古仁红,戴湘晖,杨慧. 弹体侵彻厚混凝土靶迎弹面成坑效应. 爆炸与冲击. 2022(08): 84-92 . 本站查看
    5. 徐思博,孟子飞,刘文韬,曹雪雁. 高速破片穿透液舱的数值模拟研究. 振动与冲击. 2019(06): 144-150 . 百度学术
    6. 张爽,武海军,黄风雷. 弹体侵彻钢筋混凝土靶开坑深度研究. 北京理工大学学报. 2018(06): 565-571 . 百度学术
    7. 王文杰,张先锋,邓佳杰,郑应民,刘闯. 椭圆截面弹体侵彻砂浆靶规律分析. 爆炸与冲击. 2018(01): 164-173 . 本站查看
    8. 孙惠香,牛欢,路锋,刘绍鎏,张悦. 弹体斜侵彻混凝土的倾角作用研究. 武汉大学学报(工学版). 2018(12): 1080-1085 . 百度学术
    9. 薛建锋,沈培辉,王晓鸣. 弹体斜侵彻混凝土过程中弹道偏转仿真分析. 系统仿真学报. 2017(08): 1801-1808 . 百度学术
    10. 邓佳杰,张先锋,乔治军,郭磊,何勇,陈东东. 卵形弹体侵彻预开孔靶理论分析. 爆炸与冲击. 2016(05): 625-632 . 本站查看
    11. 薛建锋,沈培辉,王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算. 高压物理学报. 2016(06): 499-504 . 百度学术

    其他类型引用(7)

  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2866
  • HTML全文浏览量:  340
  • PDF下载量:  490
  • 被引次数: 18
出版历程
  • 收稿日期:  2013-05-03
  • 修回日期:  2013-09-18
  • 刊出日期:  2014-09-25

目录

    /

    返回文章
    返回