过渡层对锆/钢爆炸复合板剪切强度的影响

王小绪 赵铮 王金相 何勇

王小绪, 赵铮, 王金相, 何勇. 过渡层对锆/钢爆炸复合板剪切强度的影响[J]. 爆炸与冲击, 2014, 34(6): 685-690. doi: 10.11883/1001-1455(2014)06-0685-06
引用本文: 王小绪, 赵铮, 王金相, 何勇. 过渡层对锆/钢爆炸复合板剪切强度的影响[J]. 爆炸与冲击, 2014, 34(6): 685-690. doi: 10.11883/1001-1455(2014)06-0685-06
Wang Xiao-xu, Zhao Zheng, Wang Jin-xiang, He Yong. Influences of transition layer on shear strength of Zr/steel explosive clad plate[J]. Explosion And Shock Waves, 2014, 34(6): 685-690. doi: 10.11883/1001-1455(2014)06-0685-06
Citation: Wang Xiao-xu, Zhao Zheng, Wang Jin-xiang, He Yong. Influences of transition layer on shear strength of Zr/steel explosive clad plate[J]. Explosion And Shock Waves, 2014, 34(6): 685-690. doi: 10.11883/1001-1455(2014)06-0685-06

过渡层对锆/钢爆炸复合板剪切强度的影响

doi: 10.11883/1001-1455(2014)06-0685-06
详细信息
    作者简介:

    王小绪(1972—), 男, 博士研究生, 副研究员

  • 中图分类号: O389

Influences of transition layer on shear strength of Zr/steel explosive clad plate

More Information
  • 摘要: 为了考察钛作为过渡层提高锆/钢复合板结合强度的有效性,同时给出合理的爆炸焊接碰撞参数,对双层锆/钢和三层锆/钛/钢进行了小倾角法爆炸焊接实验研究。借助金相显微技术测量了复合板结合界面的波形参数,采用光滑粒子动力学法模拟得到了不同位置的碰撞速度和碰撞角,并按照国家标准(GB/T 6396-2008)测量了复合板结合界面的爆炸态及退火态的剪切强度。结果表明:钛作为过渡层能够显著提高锆/钢界面的剪切强度;退火消除加工应力后,锆/钢及钛/钢结合面的剪切强度会有所降低;当锆/钛界面的碰撞速度为734~805 m/s,碰撞角为19.8°~20.8°,钛/钢界面的碰撞速度为803~904m/s,碰撞角为19.5°~20.5°时,锆/钛/钢三层复合板的锆/钛和钛/钢界面的剪切强度都能高于140 MPa。
  • 图  1  三层小倾角法爆炸焊接装置示意图

    Figure  1.  The equipment of three-layer explosive welding at small angle

    图  2  锆/钢复合板的界面波

    Figure  2.  The interfacial waves of the Zr/steel clad plate

    图  3  锆/钢复合板界面的形貌

    Figure  3.  The interfacial morphology of the Zr/steel clad plate

    图  4  锆/钛/钢复合板界面的形貌

    Figure  4.  The interfacial morphology of the Zr/Ti/steel clad plate

    图  5  复合板剪切强度测试装置示意图

    Figure  5.  The testing device for shear strength

    图  6  锆/钛/钢爆炸焊接的SPH模型

    Figure  6.  The SPH model of explosive welding for Zr/Ti/steel clad plate

    表  1  复合板的波形参数

    Table  1.   The interfacial wave parameters of the clad plates

    试样编号s/mmh/mms/hs/mmh/mms/hs/mmh/mms/h
    锆/钢界面锆/钛界面钛/钢界面
    10.1890.01117.180000.5000.1114.50
    20.5110.1333.840.1200.1101.090.8890.2004.45
    31.0560.2783.800.2220.1671.330.8330.1894.41
    41.4440.4113.510.3890.2781.401.1110.2225.00
    51.9440.7112.730.4450.3331.341.2780.2784.60
    62.1110.8332.530.5560.3891.431.4440.3334.34
    72.3330.7222.230.6110.4441.381.6110.3334.84
    82.4440.8222.970.6670.5001.331.6670.3335.00
    92.8330.7773.640.8440.5101.651.8890.3335.67
    下载: 导出CSV

    表  2  复合板结合界面的剪切强度

    Table  2.   The interfacial shear strength of clad plate

    试样编号σs/MPa
    锆/钛界面钛/钢界面锆/钢界面
    爆炸态退火态爆炸态退火态爆炸态退火态
    157416318547160
    27768124180110160
    310394150193138166
    4115101163163147132
    5142121155191144157
    6155131164217148179
    7124110158183143165
    88478166156146131
    95146133131115112
    下载: 导出CSV

    表  3  锆/钛/钢界面的碰撞参数

    Table  3.   Impact parameters for Zr/Ti/steel interface

    试样v/(m·s-1)β/(°)v/(m·s-1)β/(°)
    锆/钛界面钛/钢界面
    13255.24853.3
    250110.15548.5
    360213.568414.2
    468017.075516.8
    573419.880319.5
    677420.487120.2
    780520.890420.5
    882321.292320.9
    985021.593921.3
    下载: 导出CSV
  • [1] 王应植, 袁彪, 张林贤, 等.锆-钢复合板压力容器制造技术研究[J].石油机械, 2008, 36(6): 28-31.

    Wang Ying-zhi, Yuan Biao, Zhang Lin-xian, et al. Study of manufacturing technology of zirconium-steel clad plate paressure vessel[J]. China Petroleum Machinery, 2008, 36(6): 28-31.
    [2] 孙万仓, 贺旭明, 孙胜奇.锆/钢复合板设备结构设计分析[J].钛工业进展, 2012, 29(1): 39-41.

    Sun Wan-cang, He Xu-ming, Sun Sheng-qi. A brief introduction on the structure design of Zr-steel clad plate equipments[J]. Titanium, 2012, 29(1): 39-41.
    [3] Findik F. Recent developments in explosive welding[J]. Materials and Design, 2011, 32(3): 1081-1093.
    [4] Crossland B. Explosive welding of metals and its application[M]. Oxford: Oxford University Press, 1982: 35-38.
    [5] Wronka B. Testing of explosive welding and welded joints: Wavy character of process and joint quality[J]. International Journal of Impact Engineering, 2011, 38(5): 309-313.
    [6] 郑远谋.爆炸焊接和爆炸复合材料的原理及应用[M].长沙: 中南大学出版社, 2007: 286-287.
    [7] 邵丙璜, 张凯.爆炸焊接原理及其工程应用[M].大连: 大连工学院出版社, 1987: 301-305.
    [8] 中国国家标准化管理委员会.复合钢板力学及工艺性能实验方法[S].北京: 中国标准出版社, 2008.
    [9] 中国工业和信息化部.锆-钢复合板[S].北京: 中国标准出版社, 2011.
    [10] Liu M B, Liu G R, Lam K Y, et al. Meshfree particle simulation of the detonation process for high explosive in shaped charge unlined cavity configurations[J]. Shock Waves, 2003, 12(6): 509-520.
    [11] Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. Singapore: World Scientific, 2003: 20-23.
    [12] 李晓杰, 莫非, 闫鸿浩, 等.爆炸焊接界面波的数值模拟[J].爆炸与冲击, 2011, 31(6): 653-657.

    Li Xiao-jie, Mo Fei, Yan Hong-hao, et al. Numerical simulation of interface waves in steel explosive welding[J]. Explosion and Shock Waves, 2011, 31(6): 653-657.
    [13] Wang Xiao, Zheng Yuan-yuan, Liu Hui-xia, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method[J]. Materials and Design, 2012, 35: 210-219.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2989
  • HTML全文浏览量:  389
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回