T型管内流动气体中爆轰绕射过程的数值模拟

潘振华 范宝春 归明月

潘振华, 范宝春, 归明月. T型管内流动气体中爆轰绕射过程的数值模拟[J]. 爆炸与冲击, 2014, 34(6): 709-715. doi: 10.11883/1001-1455(2014)06-0709-07
引用本文: 潘振华, 范宝春, 归明月. T型管内流动气体中爆轰绕射过程的数值模拟[J]. 爆炸与冲击, 2014, 34(6): 709-715. doi: 10.11883/1001-1455(2014)06-0709-07
Pan Zhen-hua, Fan Bao-chun, Gui Ming-yue. Numerical investigation on evolution of detonation diffraction in moving gas inside a T-shaped channel[J]. Explosion And Shock Waves, 2014, 34(6): 709-715. doi: 10.11883/1001-1455(2014)06-0709-07
Citation: Pan Zhen-hua, Fan Bao-chun, Gui Ming-yue. Numerical investigation on evolution of detonation diffraction in moving gas inside a T-shaped channel[J]. Explosion And Shock Waves, 2014, 34(6): 709-715. doi: 10.11883/1001-1455(2014)06-0709-07

T型管内流动气体中爆轰绕射过程的数值模拟

doi: 10.11883/1001-1455(2014)06-0709-07
基金项目: 国家自然科学基金项目(51306073, 11202104);江苏省自然科学基金项目(BK20130510)
详细信息
    作者简介:

    潘振华(1981-), 男, 博士, 讲师

  • 中图分类号: O382

Numerical investigation on evolution of detonation diffraction in moving gas inside a T-shaped channel

Funds: Supported bythe National Natural Science Foundationof China (51306073, 11202014)
More Information
  • 摘要: 基于带化学反应的二维Euler方程,对H2、O2、Ar体积比为2:1:1的混合气体系统在T型管内的爆轰绕射进行了数值模拟。用二阶附加半隐的Runge-Kutta法和五阶WENO格式分别离散欧拉方程的时间和空间导数项,采用9组分48步基元反应简化模型描述爆轰波在静止系统和流动系统中的传播过程,得到了温度、压力、典型组元H质量分数的分布及数值胞格结构。结果表明:在流动系统中,迎风面上波阵面为斜爆轰结构,静止系统两侧和顺风面上的波阵面为完全解耦的前导激波;在水平管中,波阵面与上下壁面经历一系列马赫碰撞后,最终形成正爆轰;在流动系统中,胞格结构明显向下游偏移;横向爆轰波的产生对爆轰波的再生起到了关键作用。
  • 图  1  计算域示意图

    Figure  1.  The computational domain

    图  2  直管中的计算胞格

    Figure  2.  Numerical cells structure in straight tube

    图  3  t=16.2 μs时静止系统爆轰波纹影图

    Figure  3.  Numerical schlieren of detonation in a quiescent system while t=16.2 μs

    图  4  t=16.2 μs时流动系统中的计算纹影图

    Figure  4.  Numerical schlieren of detonation in a flowing system while t=16.2 μs

    图  5  迎风面上波系结构示意图

    Figure  5.  Schematic diagram of wave structure on windward side

    图  6  流动系统中爆轰波的再生及波系结构的演变

    Figure  6.  Reinitiation event of detonation and evolution of wave structure in a flowing system

    图  7  静止系统中的胞格结构演变

    Figure  7.  Cellular structure in a quiescent system

    图  8  流动系统中的胞格结构演变

    Figure  8.  Cellular structure in a flowing system

    表  1  数值验证结果与文献[17]计算结果的对比

    Table  1.   Comparison between current simulation and referance [17]

    研究网格数Δx/mmΔy/mmva/(m/s)L/mmW/mm
    本文2 048×2560.150.2351 5955430
    文献[17]2 048×2560.150.2351 6255431
    下载: 导出CSV
  • [1] Zeldovich I B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases[J]. Soviet Physics: Technical Physics, 1956, 1(8): 1689-1713.
    [2] Mitrofanov V V, Soloukhin R I. The diff'raction of mutifront detonation waves[J]. Soviet Physics: Doklady, 1965, 9(12): 1055-1058.
    [3] Soloukhin R I, Ragland K W. Ignition processes in expanding detonations[J]. Combustion and Flame, 1965, 13(3): 295-302.
    [4] Murray S B, Lee J H. On the transformation of planar detonation to cylindrical detonation[J]. Combustion and Flame, 1983, 52: 269-289.
    [5] Smolinska A, Khasainov B, Virot V, ea al. Detonation diffraction from tube to space via frontal obstacle[C]//Proceedings of the Fourth European Combustion Meeting. Vienna, Austria, 2009.
    [6] Pintgen F, Shepherd J E. Detonation diffraction in gases[J]. Combustion and Flame, 2009, 156(3): 665-677.
    [7] Guo C M, Wang C J, Xu S L, ea al. Cellular pattern evolution in gaseous detonation diffraction in a 90°-branched channel[J]. Combustion and Flame, 2007, 148(3): 89-99.
    [8] Wang C J, Xu S L, Guo C M. Gaseous detonation propagation in a bifurcated tube[J]. Journal of Fluid Mechanics, 2008, 599: 81-110.
    [9] Gui M Y, Fan B C. Wavelet structure of wedge-induced oblique detonation waves[J]. Combustion Science and Technology, 2012, 184(10/11): 1456-1470.
    [10] Yi T H, Wilson D R, Lu F K. Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber[R]. Arlington, Texas, USA: University of Texas at Arlington, 2004.
    [11] 潘振华, 范宝春, 归明月, 等.流动系统中爆轰波传播特性的数值模拟[J].爆炸与冲击, 2010, 30(6): 593-597.

    Pan Zhen-hua, Fan Bao-chun, Gui Ming-yue, et al. Numerical study of detonation wave propagation in a flow system[J]. Explosion and Shock Waves, 2010, 30(6): 593-597.
    [12] Ishii K, Kataoka H, Kojima T. Initiation and propagation of detonation waves in combustible high speed flows[J]. Proceedings of Combustion Institute, 2009, 32(2): 2323-2330.
    [13] Oran E S, Young T R, Boris J P, et al. Weak and strong ignition I: Numerical simulation of shock tube experiments[J]. Combustion and Flame, 1982, 48: 135-148.
    [14] Zhong X L. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1): 19-31.
    [15] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(2): 202-228.
    [16] Radhakrishnan K, Hindmarsh A C. Description and use of LSODE, the livermore solver for ordinary differential equations, UCRL-ID-113855[R]. Washington, USA: NASA, 1993.
    [17] Oran E S, Weber J W, Stefaniw E I, et al. Numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model[J]. Combustion and Flame, 1998, 113(1/2): 147-163.
    [18] Eckett C A. Numerical and analytical studies of the dynamic of gaseous detonation[D]. CA, USA: California Institute of Technology, 2001.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2978
  • HTML全文浏览量:  326
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-11
  • 修回日期:  2013-09-23
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回