高温后玄武岩纤维增强混凝土的动态力学特性

任韦波 许金余 白二雷 范建设

任韦波, 许金余, 白二雷, 范建设. 高温后玄武岩纤维增强混凝土的动态力学特性[J]. 爆炸与冲击, 2015, 35(1): 36-42. doi: 10.11883/1001-1455(2015)01-0036-07
引用本文: 任韦波, 许金余, 白二雷, 范建设. 高温后玄武岩纤维增强混凝土的动态力学特性[J]. 爆炸与冲击, 2015, 35(1): 36-42. doi: 10.11883/1001-1455(2015)01-0036-07
Ren Wei-bo, Xu Jin-yu, Bai Er-lei, Fan Jian-she. Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures[J]. Explosion And Shock Waves, 2015, 35(1): 36-42. doi: 10.11883/1001-1455(2015)01-0036-07
Citation: Ren Wei-bo, Xu Jin-yu, Bai Er-lei, Fan Jian-she. Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures[J]. Explosion And Shock Waves, 2015, 35(1): 36-42. doi: 10.11883/1001-1455(2015)01-0036-07

高温后玄武岩纤维增强混凝土的动态力学特性

doi: 10.11883/1001-1455(2015)01-0036-07
基金项目: 国家自然科学基金项目(51078350, 51208507)
详细信息
    作者简介:

    任韦波(1988—), 男, 博士研究生, renweibo_fhgc@163.com

  • 中图分类号: O347.3

Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures

  • 摘要: 为研究温度、加载速率、纤维掺量对玄武岩纤维增强混凝土(BFRC)动态压缩强度和冲击韧度的影响,利用∅100 mm分离式霍普金森压杆(SHPB)装置,对经历不同温度作用后的BFRC进行冲击加载实验。结果表明:高温后BFRC的动压强度及冲击韧度在同一温度下随平均应变率的上升近似线性增大;温度的升高总体上导致BFRC在同一加载速率下的动压强度及冲击韧度减小、应变率敏感性减弱;同一工况下,BFRC的动压强度和冲击韧度较素混凝土普遍提高,且当纤维体积掺量为0.2%时强韧化效果相对最佳。由此可见,高温后BFRC的冲击压缩特性受温度、加载速率、纤维掺量的综合作用影响,掺入玄武岩纤维可以有效降低高温后BFRC的损伤劣化程度。
  • 图  1  高温后试件动态压缩强度与平均应变率的关系

    Figure  1.  Relationships between dynamic compressive strength and average strain rate after elevated temperatures

    图  2  不同工况下的Rd值及其空间拟合平面

    Figure  2.  Value of Rd and its fitting plane under different working conditions

    图  3  高温后试件冲击韧度与平均应变率的关系

    Figure  3.  Relationships between impact toughness and average strain rate after elevated temperatures

    图  4  不同工况下的Ri值及其空间拟合平面

    Figure  4.  Value of Ri and its fitting plane under different working conditions

    图  5  高温后试件温度裂缝检测图

    Figure  5.  Crack width of specimens after elevated temperatures

    表  1  BFRC配合比

    Table  1.   Mix proportions of BFRC  kg/m3

    水泥 粉煤灰 硅灰 碎石 FDN 玄武岩纤维
    φ=0.1% φ=0.2% φ=0.3%
    371 99 25 1 008 672 5 180 2.65 5.30 7.95
    下载: 导出CSV
  • [1] Yi N H, Kim J H J, Han T S, et al. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete[J]. Construction and Building Materials, 2012, 28: 694-707. http://www.sciencedirect.com/science/article/pii/S0950061811005411
    [2] 许金余, 李为民, 范飞林, 等.碳纤维增强地聚合物混凝土的SHPB试验研究[J].建筑材料学报, 2010, 13(4): 435-439. http://www.cqvip.com/Main/Detail.aspx?id=35091665

    Xu Jin-yu, Li Wei-min, Fan Fei-lin, et al. Experimental study on impact properties of carbon fiber reinforced geopolymeric concrete using a SHPB[J]. Journal of Building Materials, 2010, 13(4): 435-439. http://www.cqvip.com/Main/Detail.aspx?id=35091665
    [3] 任兴涛, 周听清, 钟方平, 等.钢纤维活性粉末混凝土的动态力学性能[J].爆炸与冲击, 2011, 31(5): 540-545. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201105016.htm

    Ren Xing-tao, Zhou Ting-qing, Zhong Fang-ping, et al. Dynamic mechanical behavior of steel-fiber reactive powder concrete[J]. Explosion and Shock Waves, 2011, 31(5): 540-545. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201105016.htm
    [4] Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513/514: 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890
    [5] 杜修力, 窦国钦, 李亮, 等.纤维高强混凝土的动态力学性能试验研究[J].工程力学, 2011, 28(4): 138-144. http://www.cqvip.com/QK/95324X/20114/37335680.html

    Du Xiu-li, Dou Guo-qin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4): 138-144. http://www.cqvip.com/QK/95324X/20114/37335680.html
    [6] Wang S S, Zhang M H, Quek S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials, 2012, 31: 1-11. http://www.sciencedirect.com/science/article/pii/S0950061811007732
    [7] 贾彬.混凝土高温静动力学特性研究[D].重庆: 重庆大学, 2011.
    [8] 陶俊林, 秦李波, 李奎, 等.混凝土高温动态压缩力学性能实验[J].爆炸与冲击, 2011, 31(1): 101-106.

    Tao Jun-lin, Qin Li-bo, Li Kui, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature[J]. Explosion and Shock Waves, 2011, 31(1): 101-106.
    [9] 许金余, 刘健, 李志武, 等.高温中与高温后混凝土的冲击力学特性[J].建筑材料学报, 2013, 16(1): 1-5. http://d.wanfangdata.com.cn/Periodical/jzclxb201301001

    Xu Jin-yu, Liu Jian, Li Zhi-wu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials, 2013, 16(1): 1-5. http://d.wanfangdata.com.cn/Periodical/jzclxb201301001
    [10] 贾福萍, 王永春, 渠艳艳, 等.冷却方式和静置时间对高温后混凝土残余强度影响[J].建筑材料学报, 2011, 14(3): 400-404. http://d.wanfangdata.com.cn/Periodical/jzclxb201103022

    Jia Fu-ping, Wang Yong-chun, Qu Yan-yan, et al. Influences of various cooling methods and standing time on residual strength of concrete after elevated temperature exposure[J]. Journal of Building Materials, 2011, 14(3): 400-404. http://d.wanfangdata.com.cn/Periodical/jzclxb201103022
    [11] 王礼立.应力波基础[M].北京: 国防工业出版社, 2005.
    [12] 李为民, 许金余.大直径分离式Hopkinson压杆试验中的波形整形技术研究[J].兵工学报, 2009, 30(3): 350-355.

    Li Wei-min, Xu Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3): 350-355.
    [13] 中华人民共和国建设部, 国家质量监督检验检疫总局. GB/T 50081-2002, 普通混凝土力学性能试验方法标准[S].北京: 中国建筑工业出版社, 2003.
    [14] 吕天启, 赵国藩, 林志伸, 等.高温后静置混凝土的微观分析[J].建筑材料学报, 2003, 6(2): 135-141. http://www.cnki.com.cn/Article/CJFDTotal-JZCX200302005.htm

    Lü Tian-qi, Zhao Guo-fan, Lin Zhi-shen, et al. Microscopic analysis of long standing concrete after high temperature[J]. Journal of Building Materials, 2003, 6(2): 135-141. http://www.cnki.com.cn/Article/CJFDTotal-JZCX200302005.htm
    [15] Mehmet B K. Effect of cooling regimes on compressive strength of concrete with lightweight aggregate exposed to high temperature[J]. Construction and Building Materials, 2013, 41: 21-25. http://www.sciencedirect.com/science/article/pii/S0950061812009403
    [16] Romualdi J P, Batson G B. Mechanics of crack arrest in concrete[J]. Project American Society of Civil Engineers, 1963, 89(6): 147-168. http://www.researchgate.net/publication/285463726_Mechanics_of_crack_arrest_in_concrete
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2970
  • HTML全文浏览量:  456
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 修回日期:  2013-12-16
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回