缸内激波对锥顶型燃烧室的活塞破坏机理

姚春德 续晗 姚安仁 唐超

姚春德, 续晗, 姚安仁, 唐超. 缸内激波对锥顶型燃烧室的活塞破坏机理[J]. 爆炸与冲击, 2015, 35(1): 57-64. doi: 10.11883/1001-1455(2015)01-0057-08
引用本文: 姚春德, 续晗, 姚安仁, 唐超. 缸内激波对锥顶型燃烧室的活塞破坏机理[J]. 爆炸与冲击, 2015, 35(1): 57-64. doi: 10.11883/1001-1455(2015)01-0057-08
Yao Chun-de, Xu Han, Yao An-ren, Tang Chao. Damage mechanism of detonation wave to piston in combustion chamber with cone-type roof[J]. Explosion And Shock Waves, 2015, 35(1): 57-64. doi: 10.11883/1001-1455(2015)01-0057-08
Citation: Yao Chun-de, Xu Han, Yao An-ren, Tang Chao. Damage mechanism of detonation wave to piston in combustion chamber with cone-type roof[J]. Explosion And Shock Waves, 2015, 35(1): 57-64. doi: 10.11883/1001-1455(2015)01-0057-08

缸内激波对锥顶型燃烧室的活塞破坏机理

doi: 10.11883/1001-1455(2015)01-0057-08
基金项目: 国家自然科学基金项目(51176135);高等学校博士学科点专项科研基金项目(20120032130009)
详细信息
    作者简介:

    姚春德(1955—), 男, 博士, 教授, arcdyao@tju.edu.cn

  • 中图分类号: O383

Damage mechanism of detonation wave to piston in combustion chamber with cone-type roof

  • 摘要: 以二维数值模拟为基础,研究了锥顶型燃烧室内的冲击波发展的震荡过程,得到作用于活塞不同位置处的超压分布。模拟结果表明:由于燃烧室结构的独特性,导致冲击波能在特定区域进行汇聚,致使该区域超压明显高于其他区域。将该模拟结果与实际破坏失效的活塞进行对比,发现冲击波汇聚区域往往就是活塞被破坏的地方。数值模拟结果与实际破坏结果吻合很好。这为设计燃烧室形状以避免冲击波对活塞造成破坏提供了理论基础。
  • 图  1  锥顶型燃烧室

    Figure  1.  Combustion chamber with cone type roof

    图  2  锥顶型燃烧室中激波发展过程

    Figure  2.  Propagation of shock wave in cone style combustion chamber

    图  3  锥顶型燃烧室超压最大区域

    Figure  3.  The highest pressure region of cone style combustion chamber

    图  4  锥顶型燃烧室中活塞顶部压力时间曲线

    Figure  4.  Pressure-time curves of piston face in cone style combustion chamber

    图  5  锥顶型燃烧室中缸压传感器处的压力时间曲线

    Figure  5.  Pressure-time curve of pressure sensor in cone style combustion chamber

    图  6  被强烈爆震破坏的活塞

    Figure  6.  Piston damaged by heavy knock

    图  7  平顶型燃烧室

    Figure  7.  Combustion chamber in flat style

    图  8  平顶型燃烧室中激波发展过程

    Figure  8.  Propagation of shock wave in flat style combustion chamber

    图  9  平顶型燃烧室中活塞顶部压力时间曲线

    Figure  9.  Pressure-time curve of piston face in flat style combustion chamber

  • [1] Zahdeh A, Rothenberger P, Nguyen W, et al. Fundamental approach to investigate pre-ignition in boosted SI engines[C]//Society of Automotive Engineers Paper, 2011: 2011-01-0340.
    [2] Dahnz C, Han K M, Spicher U, et al. Investigations on pre-ignition in highly supercharged SI engines[C]//Society of Automotive Engineers Paper, 2010: 2010-01-0355.
    [3] Dahnz C, Spicher U. Irregular combustion in supercharged spark ignition engines-Pre-ignition and other phenomena[J]. International Journal of Engine Research, 2010, 11(6): 485-498. doi: 10.1243/14680874JER609
    [4] 张志福, 梁兴雨, 刘国庆, 等.增压缸内直喷汽油机抑制预燃试验[J].燃烧科学与技术, 2012, 18(2): 156-160.

    Zhang Zhi-fu, Liang Xing-yu, Liu Guo-qing, et al. Investigation on pre-ignition suppression of turbo-charged GDI engine[J]. Journal of Combustion Science and Technology, 2012, 18(2): 156-160.
    [5] 侯玉春, 吕兴才, 俎琳琳, 等.进气喷射不同辛烷值燃料的HCCI燃烧爆震试验分析[J].内燃机学报, 2006, 24(5): 414-420.

    Hou Yu-chun, Lü Xing-cai, Zu Lin-lin, et al. An experimental analysis of knock in single-cylinder HCCI engine fuelled premixed PRFs[J]. Transactions of CSICE, 2006, 24(5): 414-420.
    [6] Eng J A. Characterization of pressure waves in HCCI combustion[C]//Society of Automotive Engineers Paper, 2002: 2002-01-2859.
    [7] 姚安仁, 罗震, 姚春德, 等.甲醇点燃式发动机爆震破坏形式试验研究[J].机械工程学报, 2013, 49(4): 122-127.

    Yao An-ren, Luo Zhen, Yao Chun-de, et al. Experimental study of the failure modes of the methanol-ignition engine knock[J]. Journal of Mechanical Engineering, 2013, 49(4): 122-127.
    [8] 续晗, 姚安仁, 姚春德, 等.基于柴油机ω型燃烧室缸内激波的活塞破坏研究[J].工程热物理学报, 2014, 35(3): 586-592.

    Xu Han, Yao An-ren, Yao Chun-de, et al. Piston damaged by detonation wave produced in a ω type combustion chamber[J]. Journal of Engineering Thermophysics, 2014, 35(3): 586-592.
    [9] Roberts C E. Potential solutions to control super knock and paticulates in Euro V GDI Engines for passenger cars[R]. US, 2011.
    [10] 武茜.热冲击问题的理论研究及其在内燃机中的应用[D].浙江: 浙江大学, 2005.
    [11] Silva F S. Fatigue on engine pistons-A compendium of case studies[J]. Engineering Failure Analysis, 2006, 13(3): 480-492.
    [12] Georg Steiner. AVL Report: Knock analysis[R]. Austria, 2010.
    [13] 韦静思.内燃机燃烧过程中热声耦合机理的研究[D].天津: 天津大学, 2009.
    [14] 韦静思, 舒歌群, 卫海桥.运用波动方程计算内燃机爆震燃烧时的热声耦合性质[J].燃烧科学与技术, 2010, 16(4): 195-302.

    Wei Jing-si, Shu Ge-qun, Wei Hai-qiao. A numerical method to analyze thermoacoustics in an internal combustion engine by coupling wave equation[J]. Journal of Combustion Science and Technology, 2010, 16(4): 295-302.
    [15] 韦静思, 舒歌群, 卫海桥.内燃机爆震燃烧过程中燃烧室内声学分析[J].内燃机学报, 2011, 28(5): 427-434.

    Wei Jing-si, Shu Ge-qun, Wei Hai-qiao. Analysis of acoustics in combustion chamber during knock combustion of an IC Engine[J]. Transactions of CSICE, 2011, 28(5): 427-434.
    [16] Hickling R, Feldmaier D A, Chen F H K, et al. Cavity resonances in engine combustion chambers and some applications[J]. The Journal of the Acoustical Society of America, 1983, 73(4): 1170-1178.
    [17] 张博, 白春华.气象爆轰动力学[M].北京: 科学出版社, 2012.
    [18] 董刚, 叶经方, 范宝春.激波聚焦反射的实验和数值研究[J].高压物理学报, 2006, 20(4): 359-364.

    Dong Gang, Ye Jing-fang, Fan Bao-chun. Experimental and numerical investigation of shock wave focusing and reflection[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 359-364.
    [19] 杨秀敏.爆炸冲击现象数值模拟[M].合肥: 中国科学技术大学出版社, 2010.
    [20] 邬玉斌, 田宇隆, 张斌.地下建筑内爆炸冲击波荷载分布规律研究[J].武汉理工大学学报, 2012, 34(9): 88-93.

    Wu Yu-bin, Tian Yu-long, Zhang Bin. Distribution law of in-underground structure explosion-induced shock wave load[J]. Journal of Wuhan University of Technology, 2012, 34(9): 88-93.
    [21] 孔德森, 孟庆辉, 史明臣.爆炸冲击波在地铁隧道内的传播规律研究[J].地下空间与工程学报, 2012, 8(1): 48-55.

    Kong De-sen, Meng Qing-hui, Shi Ming-chen. The dissemination rule of blasting shock-wave in subway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 48-55.
  • 加载中
图(9)
计量
  • 文章访问数:  2846
  • HTML全文浏览量:  282
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-28
  • 修回日期:  2013-09-05
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回