燃气射流冲击传热特性的数值模拟

刘小军 傅德彬 牛青林 李霞

刘小军, 傅德彬, 牛青林, 李霞. 燃气射流冲击传热特性的数值模拟[J]. 爆炸与冲击, 2015, 35(2): 229-235. doi: 10.11883/1001-1455(2015)02-0229-07
引用本文: 刘小军, 傅德彬, 牛青林, 李霞. 燃气射流冲击传热特性的数值模拟[J]. 爆炸与冲击, 2015, 35(2): 229-235. doi: 10.11883/1001-1455(2015)02-0229-07
Liu Xiao-jun, Fu De-bin, Niu Qing-lin, Li Xia. Numerical simulation of heat transfer for exhausted gases jet impinging[J]. Explosion And Shock Waves, 2015, 35(2): 229-235. doi: 10.11883/1001-1455(2015)02-0229-07
Citation: Liu Xiao-jun, Fu De-bin, Niu Qing-lin, Li Xia. Numerical simulation of heat transfer for exhausted gases jet impinging[J]. Explosion And Shock Waves, 2015, 35(2): 229-235. doi: 10.11883/1001-1455(2015)02-0229-07

燃气射流冲击传热特性的数值模拟

doi: 10.11883/1001-1455(2015)02-0229-07
基金项目: 国家自然科学基金项目(51306019)
详细信息
    作者简介:

    刘小军(1985—), 男, 硕士研究生

    通讯作者:

    傅德彬, fdb007@bit.edu.cn

  • 中图分类号: O358;V411.3

Numerical simulation of heat transfer for exhausted gases jet impinging

  • 摘要: 针对射流传热问题,利用基于RNGk-ε湍流模型的数值方法模拟了射流垂直冲击平板的流动过程,并与实验数据比较,验证了模型的可行性。在此基础上,以火箭喷管入口参数为入口条件,建立了超音速燃气射流垂直冲击平板和冲击浸没平板的计算模型,分析了不同冲击条件下努塞尔数分布规律和温度分布规律, 论述了超音速射流传热的特性及影响传热特性的因素。得到了冲击距离为(14~18)D的努塞尔数取值范围,并表明冲击距离和射流温度是影响传热效率的关键因素;冲击距离增加,传热效率降低,冲击平板表面的射流温度越高,传热效率越高。
  • 图  1  射流冲击垂直平板模型

    Figure  1.  Model of vertical plate impinged by jet flow

    图  2  射流冲击浸没平板模型

    Figure  2.  Model of submerged plate impinged by jet flow

    图  3  亚音速射流冲击平板的努塞尔数分布

    Figure  3.  Nusselt number distribution in plate impinged

    图  4  超音速射流垂直冲击平板的努塞尔数分布

    Figure  4.  Nusselt number distribution in vertical plate impinged by supersonic jet flow

    图  5  在距垂直平板0.5 mm截面的温度分布

    Figure  5.  Temperature distribution of the section which is 0.5 mm away from the impinged plate

    图  6  浸没平板顶端面的努塞尔数分布

    Figure  6.  Nusselt number distribution on top surface of submerged plate

    图  7  浸没平板顶端面的射流温度分布

    Figure  7.  Temperature distribution on top surface of submerged plate

    图  8  H/D=14时浸没平板的努塞尔数分布

    Figure  8.  Nusselt number distribution

    图  9  H/D=14时浸没平板的温度分布

    Figure  9.  Temperature distribution on submerged plate

    图  10  浸没平板冲刷面的平均努塞尔数分布

    Figure  10.  Average Nusselt number distribution on eroded surface of submerged plate

  • [1] Baydar E, Ozmen Y. An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers[J]. Applied Thermal Engineering, 2005, 25(2): 409-421. https://www.sciencedirect.com/science/article/pii/S1359431104001474
    [2] Chen Y C, Ma C F, Qin M, et al. Forced convective heat transfer with impinging slot jets of mesoscale[J]. International Journal of Heat and Mass Transfer, 2006, 49(1): 406-410. https://www.sciencedirect.com/science/article/pii/S0017931005004874
    [3] Liu Q, Sleiti A K, Kapat J S. Application of pressure and temperature sensitive paints for study of heat transfer to a circular impinging air jet[J]. International Journal of Thermal Sciences, 2008, 47(6): 749-757. https://www.researchgate.net/publication/222924201_Application_of_Pressure_and_Temperature_Sensitive_Paints_for_Study_of_Heat_Transfer_to_a_Circular_Impinging_Air_Jet
    [4] Ramanujachari V, Vijaykant S, Roy R D, et al. Heat transfer due to supersonic flow impingement on a vertical plate[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3707-3712. https://www.researchgate.net/publication/245094227_Heat_transfer_due_to_supersonic_flow_impingement_on_a_vertical_plate
    [5] Behniat M, Parneix S. Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate[J]. International Journal of Heat Mass Transfer, 1998, 41(12): 1845-1855. https://www.sciencedirect.com/science/article/pii/S0017931097002548
    [6] 陈庆光, 徐忠, 张永建.半封闭圆管湍流射流冲击平板的数值研究[J].西安交通大学学报, 2001, 35(11): 1206-1208. http://d.wanfangdata.com.cn/Periodical/xajtdxxb200111026

    Chen Qing-guang, Xu Zhong, Zhang Yong-jian. Numerical investigation of semi-confined round turbulent jet impinging on a flat plate[J]. Journal of Xi'an Jiaotong University, 2001, 35(11): 1206-1208. http://d.wanfangdata.com.cn/Periodical/xajtdxxb200111026
    [7] 陈庆光, 徐忠, 张永建.用改进的RNG模式数值模拟湍流冲击射流流动[J].西安交通大学学报, 2002, 36(9): 916-920. http://www.cqvip.com/qk/90854x/200209/6891964.html

    Chen Qing-guang, Xu Zhong, Zhang Yong-jian. Numerical investigation of semi-confined round turbulent jet impinging on a flat plate[J]. Journal of Xi'an Jiaotong University, 2002, 36(9): 916-920. http://www.cqvip.com/qk/90854x/200209/6891964.html
    [8] Merci B, Dick E. Heat transfer predictions with a cubic k-ε model for axisymmetric turbulent jets impinging onto a flat plate[J]. International Journal of Heat and Mass Transfer, 2003, 46(3): 469-480.
    [9] 许坤梅, 张平.半封闭圆管冲击射流湍流换热数值模拟[J].北京理工大学学报, 2003, 23(5): 540-544. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb200305003

    Xu Kun-mei, Zhang Ping. Numerical prediction of turbulent heat transfer in a semi-confined impinging jet[J]. Transactions of Beijing Institute of Technology, 2003, 23(5): 540-544. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb200305003
    [10] 傅德彬.数值仿真及其在航天发射技术中的应用[M].北京: 国防工业出版社, 2011: 28-34.
    [11] 李鹏飞, 徐敏义, 王飞飞.精通CFD工程仿真与案例实战[M].北京: 人民邮电出版社, 2011: 329-338.
    [12] 赵承庆.气体射流动力学[M].北京: 北京理工大学出版社, 1998: 103-106.
    [13] Heck U, Fritsching K, Bauckhage K. Fluid flow and heat transfer in gas jet quenching of a cylinder[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(1): 36-49.
    [14] Wilcox D C. Turbulence modeling for CFD[M]. La Canada, California: DCW Industries, 2002.
    [15] 赵镇南.传热学[M].北京: 高等教育出版社, 2008: 173-192.
  • 加载中
图(10)
计量
  • 文章访问数:  2975
  • HTML全文浏览量:  383
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-29
  • 修回日期:  2013-12-13
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回