Influence of explosive parameter on the performance of explosion hardening of Hadifield steel
-
摘要: 为了研究炸药参数对高锰钢爆炸硬化效果的影响,对两种不同密度的炸药进行爆速测试,并利用该炸药分别对高锰钢试样进行爆炸硬化实验,测试了从硬化表面向材料内部的硬度、抗拉强度和冲击韧性随深度的变化。测试结果表明:高锰钢试样在相同深度下,经过密度1.38 g/cm3炸药3次爆炸硬化得到的硬度大于密度1.48 g/cm3炸药2次爆炸硬化后的硬度,而冲击韧性小于密度1.48 g/cm3炸药作用后的冲击韧性;从爆炸硬化表面向下15 mm内,经过密度1.38 g/cm3炸药3次爆炸硬化得到的抗拉强度大于密度1.48 g/cm3炸药2次爆炸硬化后的抗拉强度,但深度大于15 mm时,经过密度1.38 g/cm3炸药3次爆炸硬化得到的抗拉强度小于密度1.48 g/cm3炸药2次爆炸硬化后的抗拉强度。从硬化后试件的硬度、抗拉强度以及冲击韧性这3方面考虑,使用单次爆炸冲量较小的炸药进行多次爆炸硬化效果较好。Abstract: In order to study the influence of explosive parameter on the effect of explosion hardening of the Hadifield steel, detonation velocities of two different densities of explosive were tested respectively. The variation of internal hardness, tensile strength and impact toughness from the hardened surface to inside the material with depth was tested respectively. The hardness and impact toughness of the sample for triple explosion with the density of 1.38 g/cm3 are larger than those for twice explosion with the density of 1.48 g/cm3 at the same hardening depth. The tensile strength for triple explosion with the density of 1.38 g/cm3 is higher from the surface to 15 mm below the hardened surface but is lower from 15 mm down. For the hardness, tensile strength and impact hardened toughness consideration, the effect of explosion hardening for the smaller single impulse is better.
-
表 1 炸药爆速测试结果
Table 1. Experimental result of detonation velocity
ρ/(g·cm-3) D1/(km·s-1) D2/(km·s-1) D3/(km·s-1) D/(km·s-1) 1.38 6.480 6.435 6.495 6.470 1.48 7.210 7.175 7.215 7.200 -
[1] 张观军, 杨涤心, 魏世忠, 等.高锰钢爆炸硬化[J].热加工工艺, 2006(12): 62-65. http://d.wanfangdata.com.cn/Periodical/rjggy200624021Zhang Guan-jun, Yang Di-xin, Wei Shi-zhong, et al. Explosion hardening of high manganese steel[J]. Hot Working Technology, 2006(12): 62-65. http://d.wanfangdata.com.cn/Periodical/rjggy200624021 [2] 陈勇富, 洪有秋.高锰钢爆炸硬化[J].矿冶工程, 1986(4): 8-12.Chen Yong-fu, Hong You-qiu. Explosion hardening of high manganese steel[J]. Mining and Metallurgical Engineering, 1986(4): 8-12. [3] Macleod N A. Method of hardening manganese steel: US, 2703297[P]. 1955-03-01. [4] 赵士达, 陈维波.高锰钢整铸辙叉爆炸予硬化的研究[J].爆炸与冲击, 1982, 2(1): 11-23. http://www.bzycj.cn/article/id/11297Zhao Shi-da, Chen Wei-bo. On explosive hardening of hadfield steel rail frogs[J]. Explosion and Shock Waves, 1982, 2(1): 11-23. http://www.bzycj.cn/article/id/11297 [5] 陈维波.塑料板状炸药[J].爆炸与冲击, 1984, 4(3): 65-70. http://www.bzycj.cn/article/id/11209Chen Wei-bo. Plastic sheet explosive[J]. Explosion and Shock Waves, 1984, 4(3): 65-70. http://www.bzycj.cn/article/id/11209 [6] 陈勇富. SEP-3橡塑板片炸药[J].矿冶工程, 1994(2): 8-12; 70. http://www.cnki.com.cn/Article/CJFDTotal-KYGC402.001.htmChen Yong-fu. SEP-3 rubbery-plastic sheet explosive[J]. Mining and Metallurgical Engineering, 1994(2): 8-12; 70. http://www.cnki.com.cn/Article/CJFDTotal-KYGC402.001.htm [7] 安二峰, 陈鹏万, 杨军.一种爆炸硬化用高聚物粘结塑性炸药及应用研究[J].含能材料, 2008(6): 734-737. http://www.cqvip.com/Main/Detail.aspx?id=29148930An Er-feng, Chen Peng-wan, Yang Jun. Application study on a polymer bonded plastic explosive after explosion hardening[J]. Chinese Journal of Energetic Materials, 2008(6): 734-737. http://www.cqvip.com/Main/Detail.aspx?id=29148930 [8] Dastur Y N, Leslie W C. Mechanism of work hardening in Hadfield Manganese steel[J]. Metallurgical Transactions, 1981, 12(5): 749-759. doi: 10.1007/BF02648339 [9] Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel[J]. Scripta Materialia, 2006, 55(4): 299-302. http://www.sciencedirect.com/science/article/pii/S1359646206003678 [10] Murr L E, Meyers M A, Niou C, et al. Shock-induced deformation twinning in tantalum[J]. Acta Materialia, 1997, 45(1): 157-175. doi: 10.1016/s1359-6454(96)00145-0 [11] 薛继仁, 于启湛, 史春元.高锰钢爆炸加工硬化及其硬化机理[J].大连铁道学院学报, 1997(4): 67-71. http://www.cqvip.com/QK/96354A/19974/1004654553.htmlXue Ji-ren, Yu Qi-zhan, Shi Chun-yuan. Explosive hardening and it's mechanism on manganese steel[J]. Journal of Dalian Railway Institute, 1997(4): 67-71. http://www.cqvip.com/QK/96354A/19974/1004654553.html [12] 陈富生.高锰钢爆炸硬化机理实验研究[J].武汉钢铁学院学报, 1991(4): 390-392.Chen Fu-sheng. An experimental study on explosion hardening of high Mn steels[J]. Journal of Wuhan Steel Science Institute, 1991(4): 390-392. [13] 陈勇富, 梁季夫, 陶颂霖.高锰钢爆炸硬化机理研究[J].江西有色金属, 1993(2): 55-56; 54.Chen Yong-fu, Liang Ji-fu, Tao Song-lin. Research of explosion hardening mechanism of high Mn steels[J]. Jiangxi Nonferrous Metals, 1993(2): 55-56; 54. [14] Zhang Fu-cheng, Lü Bo, Wang Tian-sheng, et al. Microstructure and properties of purity high Mn steel crossing explosion hardened[J]. ISIJ International, 2008, 48(12): 1766-1770. doi: 10.2355/isijinternational.48.1766 [15] Zhang F C, Lü B, Wang T S, et al. Explosion hardening of Hadfield steel crossing[J]. Materials Science and Technology, 2010, 26(2): 223-229. doi: 10.1179/174328408X363263 [16] Zhang M, Lü B, Zhang F, et al. Explosion deformation and hardening behaviours of hadfield steel crossing[J]. ISIJ International, 2012, 52(11): 2093-2095. [17] 李兴霞, 赵干, 张观军.高锰钢爆炸硬化机理分析[J].热加工工艺, 2013(6): 94-96.Li Xing-xia, Zhao Gan, Zhang Guan-jun. Analysis on explosion hardening mechanism of high manganese steel[J]. Hot Working Technology, 2013(6): 94-96. [18] 赵干, 李兴霞, 张观军.爆炸硬化对高锰钢滑动磨料磨损性能的影响[J].热加工工艺, 2013(8): 101-103. http://d.wanfangdata.com.cn/Periodical/rjggy201308032Zhao Gan, Li Xing-xia, Zhang Guan-jun. Effects of explosion hardening on sliding wear behavior of high manganese steel[J]. Hot Working Technology, 2013(8): 101-103. http://d.wanfangdata.com.cn/Periodical/rjggy201308032 [19] 金韶华, 松全才.炸药理论[M].西安: 西北工业大学出版社, 2010. [20] 孟宪昌.爆炸动力学[M].太原: 太原机械学院出版社, 1984. 期刊类型引用(2)
1. 龚俊, 张航. 高锰钢辙叉在机械冲击下的预硬化特性. 兰州理工大学学报. 2019(01): 6-10 . 百度学术
2. 李党娟, 刘唐唐, 孙浩, 刘群华. 一种高精度重锤落体测速装置. 国外电子测量技术. 2015(10): 84-87 . 百度学术
其他类型引用(2)
-
推荐阅读
混凝土中多点聚集爆炸效应起爆参数优化设计
时本军 等, 爆炸与冲击, 2025
近爆条件下高强钢板的抗爆性能与几何参数影响规律研究
王宇相 等, 爆炸与冲击, 2025
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
残矿回采挤压爆破参数优化的数值模拟
周朝兰 等, 高压物理学报, 2023
氮化硅含量对现场混装乳化炸药爆炸性能的影响
朱正德 等, 高压物理学报, 2025
多种复合炸药装药的慢烤特性及其机理
肖游 等, 高压物理学报, 2022
Recent advances in targeting the undruggable proteins: from drug discovery to clinical trials
Xie, Xin et al., SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023
Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast
STRUCTURES, 2025
Investigation on aging behavior and failure mechanism of blast-resistant polyurea coating in service environments
MATERIALS TODAY COMMUNICATIONS, 2025