铝氧比对含铝炸药性能影响的数值模拟

周正青 聂建新 覃剑锋 裴红波 郭学永

周正青, 聂建新, 覃剑锋, 裴红波, 郭学永. 铝氧比对含铝炸药性能影响的数值模拟[J]. 爆炸与冲击, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
引用本文: 周正青, 聂建新, 覃剑锋, 裴红波, 郭学永. 铝氧比对含铝炸药性能影响的数值模拟[J]. 爆炸与冲击, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
Zhou Zheng-qing, Nie Jian-xin, Qin Jian-feng, Pei Hong-bo, Guo Xue-yong. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion And Shock Waves, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
Citation: Zhou Zheng-qing, Nie Jian-xin, Qin Jian-feng, Pei Hong-bo, Guo Xue-yong. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion And Shock Waves, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07

铝氧比对含铝炸药性能影响的数值模拟

doi: 10.11883/1001-1455(2015)04-0513-07
基金项目: 国家自然科学基金项目(11172042)
详细信息
    作者简介:

    周正青(1987-), 男, 博士研究生, zhouzheng_qing@163.com

  • 中图分类号: O381

Numerical simulations on effects of Al/O ratio on performance of aluminized explosives

  • 摘要: 为了研究铝氧比对含铝炸药在混凝土介质中爆炸性能的影响,采用数值模拟与实验相结合的方法,针对铝氧比分别为0、0.257、0.632的含铝炸药,利用AUTODYN有限元程序建立计算模型,计算了柱形装药在混凝土介质中的爆炸破坏过程,并且得到了在比例距离为2.5~10的范围内,3种含铝炸药爆炸形成的冲击波压力时程曲线。计算结果表明:冲击波峰值压力的衰减指数随炸药的铝氧比增大而减小,衰减指数分别为2.1、1.71、1.60;另外,当含铝炸药的铝氧比为0.257时比冲击波能最大。
  • 图  1  实验现场

    Figure  1.  Experimental site

    图  2  计算模型

    Figure  2.  Simulation model

    图  3  冲击波时程曲线的数值计算与实验结果对比

    Figure  3.  Numerical shock wave stress versus time compared with experimental results

    图  4  混凝土的损伤发展过程

    Figure  4.  The damage development process of concrete

    图  5  混凝土中的冲击波时程曲线

    Figure  5.  Shock wave stress versus time in concrete

    图  6  冲击波峰值压力与比例距离的关系

    Figure  6.  Relationship between shock wave peak load and scaled distance

    图  7  比冲击波能比较

    Figure  7.  Comparison of shock wave energy

    表  1  炸药性能[12]

    Table  1.   Characteristics of explosives[12]

    炸药w/%ηρ/(g·cm-3)Q/(MJ·kg-1)D/(m·s-1)pd/GPa
    RDXAlwax
    HL0950501.6735.8798 32529.39
    HL15801550.2571.7636.7368 12123.91
    HL30653050.6321.8657.5947 87922.21
    下载: 导出CSV

    表  2  炸药JWL状态方程参数[12]

    Table  2.   Parameters of JWL equations for explosives[12]

    炸药A/GPaB/GPaR1R2ω
    HL0694.5213.754.551.300.49
    HL151 897.5424.775.831.720.35
    HL302 225.0021.595.941.780.38
    下载: 导出CSV

    表  3  数值模拟与实验结果的比较

    Table  3.   Comparison of experimental and simulated results

    炸药m/gd/cmR/cmH/cm
    实验数值模拟实验数值模拟
    HL0701027.224.814.113.0
    HL15701028.626.914.514.2
    HL30701025.723.313.611.9
    下载: 导出CSV
  • [1] Strømsøe E, Eriksen E W. Performance of high explosives in underwater applications. Part 2: Aluminized explosives[J]. Propellants, Explosives, Pyrotechnics, 1990, 15(2): 52-53. doi: 10.1002/prep.19900150204
    [2] 黄菊, 王伯良, 仲倩, 等.温压炸药能量输出结构的初步研究[J].爆炸与冲击, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05

    Huang Ju, Wang Bo-liang, Zhong Qian, et al. A preliminary investigation on energy output structure of a thermobaric explosive[J]. Explosion and Shock Waves, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05
    [3] 周霖, 杨启先.铝氧比对含铝炸药水中爆炸冲击波的影响[J].兵工学报, 2008, 29(8): 916-919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200808005

    Zhou Lin, Yang Qi-xian. The effect of Al/O ratio on underwater explosion shock wave of aluminium-containing explosives[J]. Acta Armamentarii, 2008, 29(8): 916-919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200808005
    [4] 李金河, 赵继波, 谭多望, 等.炸药水中爆炸的冲击波性能[J].爆炸与冲击, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05

    Li Jin-he, Zhao Ji-bo, Tan Duo-wang, et al. Underwater shock wave performances of explosives[J]. Explosion and Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05
    [5] Wang Q T, Ding J, Ying M K, et al. A study on damage properties of explosive internal-blast of concrete[J]. Advanced Materials Research, 2012, 598: 420-424. doi: 10.4028/www.scientific.net/AMR.598.420
    [6] 李小雷, 聂建新, 覃剑锋, 等.含铝炸药在混凝土中爆炸效应的数值模拟研究[J].爆破, 2012, 29(3): 109-114. http://d.wanfangdata.com.cn/Periodical/bp201203027

    Li Xiao-lei, Nie Jian-xin, Qin Jian-feng, et al. Numerical simulation of explosion effects in concrete by aluminized explosives[J]. Blasting, 2012, 29(3): 109-114. http://d.wanfangdata.com.cn/Periodical/bp201203027
    [7] 王永刚, 王礼立.平板撞击下C30混凝土中冲击波的传播特性[J].爆炸与冲击, 2010, 30(2): 119-124. doi: 10.11883/1001-1455(2010)02-0119-06

    Wang Yong-gang, Wang Li-li. Shock wave propagation characteristics in C30 concrete under plate impact loading[J]. Explosion and Shock Waves, 2010, 30(2): 119-124. doi: 10.11883/1001-1455(2010)02-0119-06
    [8] 焦楚杰, 孙伟, 高培正.钢纤维高强混凝土抗爆炸研究[J].工程力学, 2008, 25(3): 158-166. http://www.cqvip.com/Main/Detail.aspx?id=26803722

    Jiao Chu-jie, Sun Wei, Gao Pei-zheng. Study on steel fiber reinforced high strength concrete subject to blast loading[J]. Engineering Mechanics, 2008, 25(3): 158-166. http://www.cqvip.com/Main/Detail.aspx?id=26803722
    [9] Rosenberg Z, Yaziv D, Partom Y. Calibration of foil-like manganin gauges in planar shock wave experiments[J]. Journal of Applied Physics, 1980, 51(7): 3702-3705. doi: 10.1063/1.328155
    [10] Kury J W. Metal acceleration by chemical explosives[C]//Proceedings of the 4th International Symposium on Detonation. Wahington DC, USA, 1965: 3-13.
    [11] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//MRS Proceedings. 1994, 418: 413-420.
    [12] 覃剑锋.含铝炸药在混凝中的爆炸作用研究[D].北京: 北京理工大学, 2012: 17-18.
    [13] 李澎.非理想炸药水下爆炸能量数出结构研究[D].北京: 北京理工大学, 2006: 25-26.
    [14] Cole R H. Underwater Explosion[M]. Princeton, USA: Princeton University Press, 1948: 86-90.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2956
  • HTML全文浏览量:  404
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-04-22
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回