C1~C4烷烃混合气体热爆燃的简化机理与分析

吴松林 杜扬 李国庆 张培理

吴松林, 杜扬, 李国庆, 张培理. C1~C4烷烃混合气体热爆燃的简化机理与分析[J]. 爆炸与冲击, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10
引用本文: 吴松林, 杜扬, 李国庆, 张培理. C1~C4烷烃混合气体热爆燃的简化机理与分析[J]. 爆炸与冲击, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10
Wu Song-lin, Du Yang, Li Guo-qing, Zhang Pei-li. Reduced mechanism and analysis for thermal deflagration of C1-C4 alkane mixture[J]. Explosion And Shock Waves, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10
Citation: Wu Song-lin, Du Yang, Li Guo-qing, Zhang Pei-li. Reduced mechanism and analysis for thermal deflagration of C1-C4 alkane mixture[J]. Explosion And Shock Waves, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10

C1~C4烷烃混合气体热爆燃的简化机理与分析

doi: 10.11883/1001-1455(2015)05-0641-10
基金项目: 国家自然科学基金项目(51276195);重庆市基础与前沿计划研究项目(cstc2013jcyjA00006)
详细信息
    作者简介:

    吴松林(1973—), 男, 博士研究生, 副教授, wusonglin100@163.com

  • 中图分类号: O381

Reduced mechanism and analysis for thermal deflagration of C1-C4 alkane mixture

  • 摘要: 为了探索油气在受限空间热爆燃发生的化学反应机理,以CHEMICAL4.1为平台,分析了C1~C4烷烃混合气体热爆燃过程的系统温度、主要组分浓度和中间产物生成率的变化规律。通过敏感性分析、生成速率分析和路径分析等方法,简化了C1~C4烷烃混合气体的详细机理,得到了一个包含37种组分、80个基元反应组成的简化机理,并进行了对比验证。在反应机理上印证了气体热爆燃过程存在缓慢氧化、快速氧化和反应平衡3个阶段。发现与超氧化氢和过氧化氢有关的基元反应是热爆燃发生的关键反应,而大量产生的氢基和羟基最终导致了热爆燃的发生。
  • 图  1  简化机理的研究思路

    Figure  1.  Research ideas for simplifing reaction mechanism

    图  2  温度随时间的变化曲线

    Figure  2.  Temperature varied with time in the system

    3(a)  主要烷烃的摩尔分数随时间的变化曲线

    3(a).  Mole fractions of main alkanes varied with time

    3(b)  主要产物的摩尔分数随时间的变化曲线

    3(b).  Mole fractions of main products varied with time

    3(c)  主要烃基的摩尔分数随时间的变化曲线

    3(c).  Mole fractions of main hydrocarbon varied with time

    3(d)  甲醛和氢基的摩尔分数随时间的变化曲线

    3(d).  Mole fractions of formaldehyde and hydrogen radical varied with time

    3(e)  其他基团的摩尔分数随时间的变化曲线

    3(e).  Mole fractions of other groups varied with time

    图  4  基元反应的温度敏感度直方图

    Figure  4.  Histograms of temperature sensitivity for basic reactions

    图  5  主要基团的总生成速率随时间的变化曲线

    Figure  5.  Generation rates of main groups varied with time

    6(a)  基元反应对氢基生成速率的影响

    6(a).  Effect of basic reactions on generation rates of hydrogen

    6(b)  基元反应对甲醛生成速率的影响

    6(b).  Effect of basic reactions on generation rates of formaldehyde

    图  7  骨干机理的反应路径

    Figure  7.  The reaction path of skeleton mechanism

    图  8  两种化学反应机理下计算得到的温度的比较

    Figure  8.  Comparison of temperature simulated under two chemical reaction mechanisms

    图  9  两种化学反应机理下计算得到的主要反应物和产物摩尔分数的比较

    Figure  9.  Comparison of mole fractions simulated under two chemical reaction mechanisms for main reactants and products

    表  1  C1~C4简化机理的反应方程

    Table  1.   Reaction equations for reduced mechanism of C1~ C4

    反应编号反应方程
    R2*O+OH=O2+H
    R10H+HO2=OH+OH
    R11*H+HO2=H2+O2
    R12H+HO2=O+H2O
    R14OH+OH=O+H2O
    R16H+H+H2=H2+H2
    R20O+O+M=O2+M
    R21*HO2+HO2=H2O2+O2
    R23*OH+OH(+M)=H2O2(+M)
    R24H2O2+H=HO2+H2
    R26H2O2+O=OH+HO2
    R28*CH3+CH3(+M)=C2H6(+M)
    R29CH3+H(+M)=CH4(+M)
    R30*CH4+H=CH3+H2
    R32CH4+O=CH3+OH
    R34*CH3+HO2=CH3O+OH
    R38*CH3+O2=CH2O+OH
    R55CH3O+M=CH2O+H+M
    R76CH2+O=CO+H+H
    R77CH2+O=CO+H2
    R100CH+O2=HCO+O
    R101CH+O=CO+H
    R102CH+OH=HCO+H
    R107CH+CH2O=CH2CO+H
    R112C+O2=CO+O
    R113C+OH=CO+H
    R115C+CH2=C2H+H
    R116*CH2O+H=HCO+H2
    R120*HCO+O2=HO2+CO
    R121*HCO+M=H+CO+M
    R123HCO+H=CO+H2
    R124HCO+O=CO+OH
    R126CO+OH=CO2+H
    R127CO+O+M=CO2+M
    R130*C2H6+CH3=C2H5+CH4
    R131*C2H6+H=C2H5+H2
    R140*C2H5+O2=C2H4+HO2
    R141C2H4+H=C2H3+H2
    R142*C2H4+OH=C2H3+H2O
    R143C2H4+O=CH3+HCO
    R145*C2H4+CH3=C2H3+CH4
    R146*C2H4+H(+M)=C2H5(+M)
    R151*C2H3+O2=CH2O+HCO
    R152*C2H3+O2=CH2HCO+O
    R157*C2H3+O2=C2H2+HO2
    R158*C2H3+CH3=C3H6
    R166C2H2+OH=CH2CO+H
    R168C2H2+OH=CH3+CO
    R183CH2HCO+H=CH2CO+H2
    R184CH2HCO+O=CH2O+HCO
    R187CH2HCO+CH3=>C2H5+CO+H
    R200*CH2CO+H=HCCO+H2
    R215HCCO+O=CH+CO2
    R229C3H8+O2=i-C3H7+HO2
    R230C3H8+O2=n-C3H7+HO2
    R231C3H8+HO2=n-C3H7+H2O2
    R233*C3H8+OH=n-C3H7+H2O
    R238*C3H8+H=n-C3H7+H2
    R247n-C3H7+M=C2H4+CH3+M
    R248n-C3H7+O2=C3H6+HO2
    R249*i-C3H7+O2=C3H6+HO2
    R250*C3H6+H(+M)=i-C3H7(+M)
    R251i-C3H7+H=C2H5+CH3
    R252n-C3H7+H=C2H5+CH3
    R257C3H6+HO2=a-C3H5+H2O2
    R263C3H6+O=C2H5+HCO
    R264C3H6+O=a-C3H5+OH
    R268*C3H6+H=a-C3H5+H2
    R273C3H6+O2=a-C3H5+HO2
    R284CH2CHCHO+O=CH2CHCO+OH
    R290CH2CHCO+O=C2H3+CO2
    R295*a-C3H5+HO2=CH2CHCHO+H+OH
    R354*C4H10=C2H5+C2H5
    R355*C4H10=n-C3H7+CH3
    R359C4H10+O2=s-C4H9+HO2
    R361C4H10+a-C3H5=s-C4H9+C3H6
    R364*C4H10+H=s-C4H9+H2
    R367*C4H10+OH=s-C4H9+H2O
    R369C4H10+O=s-C4H9+OH
    R372s-C4H9+M=C3H6+CH3+M
    下载: 导出CSV

    表  2  C1~C4简化机理反应速率方程的参数

    Table  2.   Parmeters of reaction rate equations for reduced mechanism of C1-C4

    反应编号AbEa/(J·mol-1)
    R2*2.02×1014 -0.4 0.0
    R101.50×10140.01 000.0
    R118.45×10110.71 241.0
    R12 3.01×10130.01 721.0
    R143.57×1042.4-2 112.0
    R169.20×1016 -0.60.0
    R201.89×10130.0 -1 788.0
    R21*4.20×1014 0.011 982.0
    R23*1.24×1014-0.40.0
    R241.98×1062.0 2 435.0
    R269.55×1062.03 970.0
    R28*9.22×1016-1.2636.0
    R292.14×1015 -0.40.0
    R30*2.20×1043.08 750.0
    R326.92×1081.68 485.0
    R34*7.00×10120.0 0.0
    R38*2.51×10110.014 640.0
    R555.45×10130.013 497.0
    R765.00×10130.00.0
    R773.00×10130.00.0
    R1003.30×10130.00.0
    R1015.70×10130.0 0.0
    R1023.00×10130.0 0.0
    R1079.46×1013 0.0 -515.0
    R1122.00×10130.00.0
    R1135.00×10130.00.0
    R1155.00×10130.0 0.0
    R116*2.19×1081.83 000.0
    R120*7.58×10120.0410.0
    R121*1.86×1017-1.017 000.0
    R1231.19×10130.2 0.0
    R1243.00×10130.00.0
    R1269.42×1032.2-2 351.0
    R1276.17×10140.03 000.0
    R130*5.50×10-14.08 300.0
    R131*5.40×1023.55 210.0
    R140*3.00×1020-2.96 760.0
    R1413.36×10-76.01 692.0
    R142*2.02×10130.05 936.0
    R1431.02×1071.9 179.0
    R145*6.623.79 500.0
    R146*1.08×10120.51 822.0
    R151*1.70×1029-5.36 500.0
    R152*3.50×1014-0.65 260.0
    R157*2.12×10-66.09 484.0
    R158*4.46×1056-13.013 865.0
    R1662.18×10-44.5-1 000.0
    R1684.83×10-44.0 -2 000.0
    R1834.00×10130.00.0
    R1841.00×10140.00.0
    R1874.90×1014-0.50.0
    R200*2.00×10140.08 000.0
    R2152.95×10130.01 113.0
    R2294.00×10130.0 48 610.0
    R2304.00×10130.051 360.0
    R2314.76×1042.516 492.0
    R233*3.16×1071.8934.0
    R238*1.33×1062.56 756.0
    R2471.23×1013-0.130 202.0
    R2483.58×1090.0 -3 532.0
    R249*6.10×1020-2.97 910.0
    R250*5.70×1091.2874.0
    R2515.00×10130.0 0.0
    2521.00×10140.0 0.0
    R2579.64×1032.613 910.0
    R2631.58×1071.8-1 216.0
    R2645.24×1011 0.75 884.0
    R268*1.73×1052.52 492.0
    R2732.00×10130.044 000.0
    R2847.24×10120.01 970.0
    R2901.00×10140.0 0.0
    R295*1.00×10130.00.0
    R354*2.00×10160.081 300.0
    R355*1.74×10170.085 700.0
    R3594.00×10130.047 600.0
    R3613.16×10110.016 400.0
    R364*5.68×1052.4 3 765.0
    R367*7.23×1071.6 -247.0
    R3695.62×10130.05 200.0
    R3722.14×1012 0.730 856.0
    下载: 导出CSV
  • [1] Battin-Leclerc F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in Energy and Combustion Science, 2008, 34: 440-498. doi: 10.1016/j.pecs.2007.10.002
    [2] Wang Yi-feng, Yao Ming-fa, Zheng Zun-qing. A semi-detailed chemical kinetic model of a gasoline surrogate fuel for internal combustion engine applications[J]. Fuel, 2013, 113(2): 347-356. http://www.sciencedirect.com/science/article/pii/S0016236113004882
    [3] 刘合, 陈方, 刘洪, 等.甲烷/空气预混超声速燃烧的18步简化机理[J].燃烧科学与技术, 2012, 18(5): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201205015.htm

    Liu He, Chen Fang, Liu Hong, et al. 18-step reduced mechanism for methane/air premixed supersonic combustion[J]. Journal of Combustion Science and Technology, 2012, 18(5): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201205015.htm
    [4] 梁运涛.封闭空间瓦斯爆炸过程的反应动力学分析[J].中国矿业大学学报, 2010, 39(2): 196-200. http://d.wanfangdata.com.cn/Periodical/zgkydxxb201002009

    Liang Yun-tao. Analysis of reaction kinetic for gas explosion in enclosed space[J]. Journal of China University of Mining and Technology, 2010, 39(2): 196-200. http://d.wanfangdata.com.cn/Periodical/zgkydxxb201002009
    [5] 刘耀东, 解茂昭, 贾明, 等.一个改进的异辛烷氧化化学动力学骨架模型[J].工程热物理学报, 2013, 34(4): 791-795. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201304049.htm

    Liu Yao-dong, Xie Mao-zhao, Jia Ming, et al. An improved skeletal chemical kinetic model for iso-octane oxidation[J]. Journal of Engineering Thermophysics, 2013, 34(4): 791-795. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201304049.htm
    [6] 方亚梅, 王全德, 王繁, 等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报, 2012, 28(11): 2536-2542. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201211006.htm

    Fang Ya-mei, Wang Quan-de, Wang Fan, et al. Reduction of the detailed kinetic mechanism for high-temperature combustion of n-dodecane[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2536-2542. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201211006.htm
    [7] 姚通, 钟北京.正癸烷着火及燃烧的化学动力学模型[J], 物理化学学报, 2013, 29(2): 237-244.

    Yao Tong, Zhong Bei-jing. Chemical kinetic model for auto-ignition and combustion of n-decane[J]. Acta Physico-Chimica Sinica, 2013, 29(2): 237-244.
    [8] 雒婧, 尧命发.正庚烷甲苯混合物燃烧简化机理分析[J].燃烧科学与技术, 2012, 18(4): 367-374. http://d.wanfangdata.com.cn/Periodical/rskxyjs201204013

    Luo Jing, Yao Ming-fa. Reduced combustion mechanism of n-heptane/toluene mixtures[J]. Journal of Combustion Science and Technology, 2012, 18(4): 367-374. http://d.wanfangdata.com.cn/Periodical/rskxyjs201204013
    [9] 郑东, 钟北京.异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型[J].物理化学学报, 2012, 28(9): 2029-2036. http://d.wanfangdata.com.cn/Periodical/wlhxxb201209003

    Zheng Dong, Zhong Bei-jing. Chemical kinetic model for ignition of three-component fuel comprising iso-octane/n-heptane/ethanol[J]. Acta Physico-Chimica Sinica, 2012, 28(9): 2029-2036. http://d.wanfangdata.com.cn/Periodical/wlhxxb201209003
    [10] Mehl M, Pitz W J, Westbrook C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193-200. http://www.sciencedirect.com/science/article/pii/S1540748910000787
    [11] 曾文, 解茂昭.正庚烷HCCI燃烧下多环芳烃生成机理与影响因素分析[J].大连理工大学学报, 2012, 52(2): 183-190. http://www.cqvip.com/QK/90724X/20122/41248426.html

    Zeng Wen, Xie Mao-zhao. Analyses of influencing factors and formation mechanism of polycyclic aromatic hydrocarbons in n-heptane HCCI combustion[J]. Journal of Dalian University of Technology, 2012, 52(2): 183-190. http://www.cqvip.com/QK/90724X/20122/41248426.html
    [12] 张庆峰, 郑朝蕾, 何祖威, 等.适用于HCCI发动机的基础燃料化学动力学模型: Ⅱ:构造骨架机理[J].内燃机学报, 2011, 29(2): 133-138. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201102007.htm

    Zhang Qing-feng, Zheng Zhao-lei, He Zu-wei, et al. A chemical kinetic model of PRF oxidation for HCCI engine: Ⅱ: Structure of a skeletal model[J]. Transactions of CSICE, 2011, 29(2): 133-138. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201102007.htm
    [13] Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and Flame, 2008, 155(4): 713-738. doi: 10.1016/j.combustflame.2008.05.002
    [14] Narayanaswamy K, Blanquart G, Pitsch H. A consistent chemical mechanism for oxidation of substituted aromatic species[J]. Combustion and Flame, 2010, 157(10): 1879-1898. doi: 10.1016/j.combustflame.2010.07.009
    [15] 贾宝山, 李艳红, 曾文, 等.受限空间瓦斯爆炸链式反应机理的敏感性分析[J].环境工程, 2011, 29(增刊): 318-323. http://www.cqvip.com/QK/93897X/2011S1/1003576782.html

    Jia Bao-shan, Li Yan-hong, Zeng Wen, et al. Sensitive analysis of chain reaction mechanism of gas explosion[J]. Environmental Engineering, 2011, 29(Suppl): 318-323. http://www.cqvip.com/QK/93897X/2011S1/1003576782.html
    [16] Li Shan-ling, Jiang Yong, Qiu Rong. Detailed mechanism reduction for C3H8/DMMP/air flame based on path flux analysis-sensitivity analysis method[J]. Journal of Combustion Science and Technology, 2012, 18(5): 473-478. http://d.wanfangdata.com.cn/Periodical_rskxyjs201205017.aspx
    [17] Lawrence Livermore National Laboratory. C1-C4 mechanism with PAH formation[EB/OL]. [2014-2-10].https://combustion.llnl.gov/mechanisms/aromatic-and-pah-formation/c1c4-mechanism-with-pah-formation.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  2541
  • HTML全文浏览量:  307
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2014-05-18
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回