超临界CO2磨料射流流场影响因素的模拟分析

贺振国 李根生 王海柱 沈忠厚 田守嶒

贺振国, 李根生, 王海柱, 沈忠厚, 田守嶒. 超临界CO2磨料射流流场影响因素的模拟分析[J]. 爆炸与冲击, 2015, 35(5): 659-667. doi: 10.11883/1001-1455(2015)05-0659-09
引用本文: 贺振国, 李根生, 王海柱, 沈忠厚, 田守嶒. 超临界CO2磨料射流流场影响因素的模拟分析[J]. 爆炸与冲击, 2015, 35(5): 659-667. doi: 10.11883/1001-1455(2015)05-0659-09
He Zhen-guo, Li Gen-sheng, Wang Hai-zhu, Shen Zhong-hou, Tian Shou-ceng. A simulation analysis of factors influencing the flow field of the abrasive supercritical CO2 jet[J]. Explosion And Shock Waves, 2015, 35(5): 659-667. doi: 10.11883/1001-1455(2015)05-0659-09
Citation: He Zhen-guo, Li Gen-sheng, Wang Hai-zhu, Shen Zhong-hou, Tian Shou-ceng. A simulation analysis of factors influencing the flow field of the abrasive supercritical CO2 jet[J]. Explosion And Shock Waves, 2015, 35(5): 659-667. doi: 10.11883/1001-1455(2015)05-0659-09

超临界CO2磨料射流流场影响因素的模拟分析

doi: 10.11883/1001-1455(2015)05-0659-09
基金项目: 国家自然科学基金项目(51210006, 51304226);国家重点基础研究发展计划(973计划)项目(2014CB239203)
详细信息
    作者简介:

    贺振国(1986—), 男, 博士研究生

    通讯作者:

    李根生, ligs@cup.edu.cn

  • 中图分类号: O354

A simulation analysis of factors influencing the flow field of the abrasive supercritical CO2 jet

  • 摘要: 为了揭示超临界CO2磨料射流流场特性,利用计算流体动力学模拟软件,对超临界CO2磨料射流结构及不同因素对射流流场的影响规律进行了研究。结果表明:超临界CO2磨料射流轴向速度和冲击力随着喷距的增大,先增大后减小,即存在最优喷距,喷射压差为10~30 MPa时最优喷距为3~6倍喷嘴直径;喷射压差一定时,围压由10 MPa增至30 MPa对射流速度场及液相冲击力会造成较小的负面影响。通过超临界CO2射流破岩实验对上述2因素进行了辅助对比验证;流体温度由333 K增至413 K,固液两相轴向速度增大,而流体密度降低,导致液相冲击力减弱;磨料浓度由3.0%连续增至11.0%,射流固液两相轴向速度逐渐降低,降幅逐渐减小。
  • 图  1  数值模拟区域截面示意图

    Figure  1.  Plane sketch of the geometric model

    图  2  数值模拟区域的三维几何模型

    Figure  2.  The physical model of the flow field

    图  3  不同横断面上流体速度的径向分布

    Figure  3.  Distribution of axial velocity in the flow field at different standoff distances

    图  4  液相对壁面冲击力随喷距变化曲线

    Figure  4.  Jet impact pressure varied with standoff distance

    图  5  超临界CO2射流破岩实验射孔深度随喷距的变化

    Figure  5.  Perforation depth varied with standoff distance in the sc-CO2 jet rock-breaking experiment

    图  6  不同喷距流场中颗粒轴向速度随轴向位置的变化

    Figure  6.  Axial velocity of particles at different positions in geometric models with different standoff distances

    图  7  不同围压下流体轴向速度的径向分布

    Figure  7.  Distribution of axial velocity at different confining pressure

    图  8  超临界CO2射流破岩实验射孔深度随围压的变化

    Figure  8.  Perforation depth varied with confining pressure in the sc-CO2 jet rock-breaking experiment

    图  9  入射流体温度对流体轴向速度的影响

    Figure  9.  Distribution of axial velocity of fluid on the central line at different jet inlet temperatures

    图  10  入射流体温度对颗粒轴向速度的影响

    Figure  10.  Distribution of axial velocity of particles on the central line at different jet inlet temperatures

    图  11  流体对壁面冲击力随温度变化曲线

    Figure  11.  Jet impact pressure varied with jet inlet temperatures

    图  12  不同入射流体温度条件下射流中轴线上流体密度分布

    Figure  12.  Distribution of sc-CO2 fluid density on the central line at different jet inlet temperatures

    图  13  不同磨料浓度下射流固液两相轴向速度分布

    Figure  13.  Distribution of axial velocity of fluid and particles at different concentrations of discrete phase

  • [1] 李根生, 沈忠厚.高压水射流理论及其在石油工程中应用研究进展[J].石油勘探与开发, 2005, 32(1): 96-99. http://d.wanfangdata.com.cn/Periodical/hggl201426235

    Li Gen-sheng, Shen Zhong-hou. Advances in researches and applications of water jet theory in petroleum engineering[J]. Petroleum Exploration and Development, 2005, 32(1): 96-99. http://d.wanfangdata.com.cn/Periodical/hggl201426235
    [2] 李根生, 盛茂, 田守嶒, 等.水平井水力喷射分段酸压技术[J].石油勘探与开发, 2012, 39(1): 100-104. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201201013.htm

    Li Gen-sheng, Sheng Mao, Tian Shou-ceng, et al. Multistage hydraulic jet acid fracturing technique for horizontal wells[J]. Petroleum Exploration and Development, 2012, 39(1): 100-104. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201201013.htm
    [3] 杨清文, 王晓敏.前混合磨料水射流切割钢板和混凝土的实验研究[J].兵工学报, 2005, 26(1): 133-135. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200501031.htm

    Yang Qing-wen, Wang Xiao-min. Experimental study on the cutting of steel and concrete with the pre-mixed abrasive jet[J]. Acta Armamentarii, 2005, 26(1): 133-135. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200501031.htm
    [4] 樊晶明, 王成勇, 王军.微磨料空气射流加工技术的发展[J].金刚石与磨料磨具工程, 2005, 145(1): 25-30. http://www.cnki.com.cn/Article/CJFDTotal-JGSM200501008.htm

    Fan Jing-ming, Wang Cheng-yong, Wang Jun. Development of micro abrasive jet machining technology[J]. Diamond and Abrasives Technology, 2005, 145(1): 25-30. http://www.cnki.com.cn/Article/CJFDTotal-JGSM200501008.htm
    [5] 李全来.微磨料气射流切割单晶硅冲蚀率及切割质量研究[D].济南: 山东大学, 2009: 61-100.
    [6] 韩布兴.超临界流体科学与技术[M].北京: 中国石化出版社, 2005: 2-27.
    [7] 郭英凯, 赵燕禹, 王韬.利用超临界流体制备超细粉体的装置和方法: 中国, CN 102847488 A[P]. 2013-01-02.
    [8] Kollé J J. Coiled tubing drilling with supercritical carbon dioxide. SPE 65534, 2000.
    [9] 杜玉昆, 王瑞和, 倪红坚, 等.超临界二氧化碳射流破岩试验[J].中国石油大学学报:自然科学版, 2012, 36(4): 93-96. http://www.cnki.com.cn/Article/CJFDTotal-SYDX201204019.htm

    Du Yu-kun, Wang Rui-he, Ni Hong-jian, et al. Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum: Edition of Natural Science, 2012, 36(4): 93-96. http://www.cnki.com.cn/Article/CJFDTotal-SYDX201204019.htm
    [10] Wang Hai-zhu, Li Gen-sheng, Shen Zhong-hou, et al. Experimental study on rock-breaking with supercritical CO2 jet[C]//The 10th Pacific Rim International Conference on Water Jet Technology. Jeju, Korea, 2013.
    [11] Al-Adwani F, Langlinais J P, Hughes R. Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide[R]. SPE 114050, 2008.
    [12] 王海柱, 沈忠厚, 李根生.超临界CO2连续油管钻井可行性分析[J].石油勘探与开发, 2010, 37(6): 743-747. http://www.cqvip.com/Main/Detail.aspx?id=36194814

    Wang Hai-zhu, Shen Zhong-hou, Li Gen-sheng. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2010, 37(6): 743-747. http://www.cqvip.com/Main/Detail.aspx?id=36194814
    [13] 王海柱, 沈忠厚, 李根生.超临界CO2钻井井筒压力温度耦合计算[J].石油勘探与开发, 2011, 38(1): 97-102. http://d.wanfangdata.com.cn/Periodical/syktykf201101014

    Wang Hai-zhu, Shen Zhong-hou, Li Gen-sheng. Wellbore temperature and pressure coupling calculation of drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2011, 38(1): 97-102. http://d.wanfangdata.com.cn/Periodical/syktykf201101014
    [14] 沈忠厚, 王海柱, 李根生.超临界CO2钻井水平井段携岩能力数值模拟[J].石油勘探与开发, 2011, 38(2): 233-236. http://www.cqvip.com/QK/90664X/20112/37670030.html

    Shen Zhong-hou, Wang Hai-zhu, Li Gen-sheng. Numerical simulation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section[J]. Petroleum Exploration and Development, 2011, 38(2): 233-236. http://www.cqvip.com/QK/90664X/20112/37670030.html
    [15] 王海柱, 沈忠厚, 李根生.地层水侵入对超临界CO2钻井井筒温度和压力的影响[J].石油勘探与开发, 2011, 38(3): 362-368. http://d.wanfangdata.com.cn/Periodical/syktykf201103017

    Wang Hai-zhu, Shen Zhong-hou, Li Gen-sheng. Influences of formation water invasion on the well bore temperature and pressure in supercritical CO2 drilling[J]. Petroleum Exploration and Development, 2011, 38(3): 362-368. http://d.wanfangdata.com.cn/Periodical/syktykf201103017
    [16] 王海柱.超临界CO2钻井井筒多相流流动模型与携岩规律研究[D].北京: 中国石油大学(北京), 2011: 7-50.
    [17] Wang Hai-zhu, Shen Zhong-hou, Li Gen-sheng. The development and prospect of supercritical carbon dioxide drilling[J]. Petroleum Science and Technology, 2012, 30(16): 1670-1676. doi: 10.1080/10916466.2010.516301
    [18] Dong Zhao-xia, Li Yi, Lin Mei-qin, et al. A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions[J]. Petroleum Science, 2013, 10(1): 91-96. http://www.cnki.com.cn/Article/CJFDTotal-SYKX201301013.htm
    [19] Wang Hai-zhu, Li Gen-sheng, Shen Zhong-hou, et al. Experiment on rock breaking with supercritical carbon dioxide jet[J]. Journal of Petroleum Science and Engineering, 2015, 127: 305-310. doi: 10.1016/j.petrol.2015.01.006
    [20] 牛继磊, 李根生, 宋剑, 等.水力喷砂射孔参数实验研究[J].石油钻探技术, 2003, 31(2): 14-16. http://www.cqvip.com/Main/Detail.aspx?id=7589195

    Niu Ji-lei, Li Geng-sheng, Song Jian, et al. An experimental study on abrasive water jet perforation parameters[J]. Petroleum Drilling Techniques, 2003, 31(2): 14-16. http://www.cqvip.com/Main/Detail.aspx?id=7589195
    [21] 牛继磊, 李根生, 宋剑, 等.磨料射流射孔增产技术研究与应用[J].石油钻探技术, 2003, 31(5): 55-57. http://d.wanfangdata.com.cn/Periodical/syztjs200305018

    Niu Ji-lei, Li Geng-sheng, Song Jian, et al. Investigation and application of abrasive water jet perforation to enhance oil production[J]. Petroleum Drilling Techniques, 2003, 31(5): 55-57. http://d.wanfangdata.com.cn/Periodical/syztjs200305018
    [22] 李根生, 黄中伟, 牛继磊, 等.磨料喷射装置及磨料射流射孔、分层压裂方法: 中国, CN 200910082408[P]. 2009.
    [23] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. doi: 10.1063/1.555991
    [24] Span R. Multi-parameter equation of state: An accurate source of thermodynamic property data[M]. Berlin: Springer-Verlag Press, 2000.
    [25] Fenghour A, Wakeham W A, Vesovic V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44. doi: 10.1063/1.556013
    [26] Vesovic V, Wakeham W A, Olchowy G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763-808. doi: 10.1063/1.555875
    [27] 王福军.计算流体动力学分析[M].北京: 清华大学出版社, 2004: 1-250.
    [28] 李根生, 牛继磊, 刘泽凯, 等.水力喷砂射孔机理实验研究[J].石油大学学报:自然科学版, 2002, 26(2): 31-34. http://www.cnki.com.cn/Article/CJFDTotal-SYDX200202008.htm

    Li Gen-sheng, Niu Ji-lei, Liu Ze-kai, et al. Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production[J]. Journal of China University of Petroleum: Edition of Natural Science, 2002, 26(2): 31-34. http://www.cnki.com.cn/Article/CJFDTotal-SYDX200202008.htm
    [29] 廖华林, 李根生, 牛继磊.淹没条件下超高压水射流破岩影响因素与机制分析[J].岩石力学与工程学报, 2008, 27(6): 1243-1250. http://www.cqvip.com/Main/Detail.aspx?id=27489390

    Liao Hua-lin, Li Gen-sheng, Niu Ji-lei. Influential factors and mechanical analysis of rock breakage by ultra-high pressure water jet under submerged condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1243-1250. http://www.cqvip.com/Main/Detail.aspx?id=27489390
  • 加载中
图(13)
计量
  • 文章访问数:  2592
  • HTML全文浏览量:  301
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-19
  • 修回日期:  2014-07-14
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回