基于Visco-SCRAM模型的侵彻装药点火研究

孙宝平 段卓平 万经伦 刘彦 欧卓成 黄风雷

孙宝平, 段卓平, 万经伦, 刘彦, 欧卓成, 黄风雷. 基于Visco-SCRAM模型的侵彻装药点火研究[J]. 爆炸与冲击, 2015, 35(5): 689-695. doi: 10.11883/1001-1455(2015)05-0689-07
引用本文: 孙宝平, 段卓平, 万经伦, 刘彦, 欧卓成, 黄风雷. 基于Visco-SCRAM模型的侵彻装药点火研究[J]. 爆炸与冲击, 2015, 35(5): 689-695. doi: 10.11883/1001-1455(2015)05-0689-07
Sun Bao-ping, Duan Zhuo-ping, Wan Jing-lun, Liu Yan, Ou Zhuo-cheng, Huang Feng-lei. Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model[J]. Explosion And Shock Waves, 2015, 35(5): 689-695. doi: 10.11883/1001-1455(2015)05-0689-07
Citation: Sun Bao-ping, Duan Zhuo-ping, Wan Jing-lun, Liu Yan, Ou Zhuo-cheng, Huang Feng-lei. Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model[J]. Explosion And Shock Waves, 2015, 35(5): 689-695. doi: 10.11883/1001-1455(2015)05-0689-07

基于Visco-SCRAM模型的侵彻装药点火研究

doi: 10.11883/1001-1455(2015)05-0689-07
基金项目: 国家自然科学基金项目(11272059)
详细信息
    作者简介:

    孙宝平(1976—), 男, 博士

    通讯作者:

    段卓平, duanzp@bit.edu.cn

  • 中图分类号: O381

Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model

  • 摘要: 针对弹体侵彻过程中装药的安全性,基于黏弹性统计裂纹力学(visco-statistical crack mechanics, Visco-SCRAM)模型计算装药整体温升、装药裂纹摩擦生热以及弹体装药与壳体摩擦生热,考察这3种机制对装药温升的贡献以及侵彻装药的点火机制,得到了装药点火对应的弹体侵彻临界初始速度。结果表明:(1)装药与弹体内壁摩擦生热对装药温升有一定贡献,随着弹体初始撞击速度的提高,摩擦生热对温升的贡献逐渐增大;(2)黏性、损伤和绝热体积变化导致的装药整体温升对装药点火的作用有限; (3)裂纹摩擦形成热点是侵彻装药点火的物理机制;(4)采用Visco-SCRAM模型可预测低强度、长脉冲载荷作用下的装药点火响应。
  • 图  1  裂纹面热点模型示意图

    Figure  1.  Schematic diagram of hot spot in crack

    图  2  弹体和装药结构示意图

    Figure  2.  Schematic structure of the projectile and charge

    图  3  弹体侵彻靶体1/4计算模型

    Figure  3.  One-fourth of the calculation model for a projectile penetrating a target

    图  4  不同初始侵彻速度下装药最高温单元的温度变化曲线

    Figure  4.  Temperature-time curves of the elements with maximum temperature rise in the charge at different initial penetration velocities

    图  5  在基于整体温升模型得到的装药温度分布云图

    Figure  5.  Temperature contours of the charge based on the bulk temperature rise model at the initial penetration velocity of 430 m/s

    图  6  装药单元位置示意图

    Figure  6.  Schematic diagram of the characteristic explosive elements selected along the axial of the charge

    图  7  在弹体初始侵彻速度为440 m/s的情况下,装药不同位置处单元的静水压力变化曲线

    Figure  7.  Hydrostatic pressure histories of the explosiveelements at different positions in the chargeat the initial penetration velocity of 440 m/s

    图  8  在弹体初始侵彻速度为440 m/s的情况下,装药不同位置处单元的最大剪切应变率变化曲线

    Figure  8.  Maximum shear strain rate histories of the explosive elements at different positions in the chargeat the initial penetration velocity of 440 m/s

    图  9  3种不同初始侵彻速度下装药内单元28225热点区域的温度变化曲线

    Figure  9.  Temperature-time curves in the hot spot of explosive element 28225 in the charge at three different initial penetraion velocities

    表  1  PBX9501炸药的黏弹性参数[2-8]

    Table  1.   Viscoelasticity parameters of PBX9501[2-8]

    nG/MPaτ/s
    19440
    2173.81.366×10-4
    3521.21.366×10-5
    4908.51.366×10-6
    5687.55.000×10-7
    下载: 导出CSV

    表  2  PBX9501炸药统计裂纹参数[2-8]

    Table  2.   Crack parameters of explosive PBX9501[2-8]

    νma/mc0/mvmax/(m·s-1)K0/(Pa·m1/2)
    0.3101.00×10-33.00×10-53.00×1025.0×105
    下载: 导出CSV

    表  3  PBX9501炸药热力学参数[2-8]

    Table  3.   Thermodynamics parameters of explosive PBX9501[2-8]

    ρ/(g·cm-3)k/(W·m-1·K-1)cV/(J·kg-1·K-1)H/(J·kg-1)Z/s-1(E·R-1)/K
    1.80.51.2×1035.5×1065×10192.652×104
    下载: 导出CSV
  • [1] Foster J C, Christopher F R, Wilson L L, et al. Mechanical ignition of combustion in condensed phase high explosives[C]//Shock Compression of Condensed Matter-1997: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Amherst, MA, USA: American Institute of Physics, 1997: 389-392.
    [2] Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]//Proceedings of the 11th International Detonation Symposium. Snowmass, CO, USA, 1998: 717-724.
    [3] Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. Journal of Computer-Aided Materials Design, 2001, 7(3): 217-237. doi: 10.1023/A:1011874909560
    [4] Zuo Q H, Dienes J K. On the stability of penny-shaped cracks with friction: The five types of brittle behavior[J]. International Journal of Solids and Structures, 2005, 42(5/6): 1309-1326. https://www.sciencedirect.com/science/article/pii/S0020768304004512
    [5] 赵四海.用粘弹性统计裂纹模型模拟高能炸药的力学响应和非冲击点火[D].长沙: 国防科学技术大学, 2011: 9-12.
    [6] Addessio F L, Johnson J N. A constitutive model for the dynamic response of brittle materials[J]. Journal of Applied Physics, 1990, 67(7): 3275-3286. doi: 10.1063/1.346090
    [7] Dienes J K. Crack dynamics via Lagrange's equations and generalized coordinates[J]. Acta Mechanica, 2001, 148(1/2/3/4): 79-92. doi: 10.1007%2FBF01183670
    [8] Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the nonshock ignition and mechanical response of high explosives[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303-2322. doi: 10.1016/S0022-5096(98)00011-8
    [9] 陈文.高速侵彻条件下战斗部装药安全性研究[D].北京: 北京理工大学, 2009: 41-42.
    [10] Hackett R M, Bennett J G. An implicit finite element material model for energetic particulate composite materials[J]. International Journal for Numerical Methods in Engineering, 2000, 49(9): 1191-1209. doi: 10.1002/1097-0207(20001130)49:9<1191::AID-NME997>3.0.CO;2-V
    [11] Dienes J K, Middleditch J, Kershner J D, et al. Progress in statistical crack mechanics: An approach to initiation[C]//Proceedings of the 12th International Detonation Symposium. Annapolis, USA: Los Alamos National Laboratory, 2002: 793-799.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  3015
  • HTML全文浏览量:  414
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-21
  • 修回日期:  2014-05-27
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回