激波冲击火焰的涡量特性研究

朱跃进 董刚

朱跃进, 董刚. 激波冲击火焰的涡量特性研究[J]. 爆炸与冲击, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
引用本文: 朱跃进, 董刚. 激波冲击火焰的涡量特性研究[J]. 爆炸与冲击, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
Citation: Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07

激波冲击火焰的涡量特性研究

doi: 10.11883/1001-1455(2015)06-0839-07
基金项目: 国家自然科学基金项目(11372140, 11402102);江苏省自然科学基金青年项目(BK20140524);江苏大学高级专业人才科研启动基金项目(14JDG031);江苏省博士后基金项目(1402013B)
详细信息
    作者简介:

    朱跃进(1986—), 男, 博士, 讲师, zyjwind@163.com

  • 中图分类号: O382

A study of vorticity characteristics of shock-flame interaction

  • 摘要: 激波冲击火焰的现象涉及一系列复杂的物理化学过程,其中涡量的生成与演化对控制火焰发展起重要作用。为系统分析激波冲击火焰过程中的涡量特性,采用二维带化学反应的Navier-Stokes方程对平面入射激波及其反射激波与球形火焰作用的现象进行了数值研究,通过引入并行计算达到高网格分辨率的要求。计算结果表明,斜压项对火焰区内涡量生成起主导作用,压缩项和耗散项在火焰膨胀阶段抑制涡量生成,此外,火焰在激波压缩阶段主要受物理过程而非化学反应过程影响。
  • 图  1  计算区域和初始流场示意图

    Figure  1.  Computational domain and initial flow field

    图  2  流场分区示意图

    Figure  2.  Schematic of flow field block

    图  3  激波距点火位置距离、火焰界面宽度和高度计算结果(曲线)与实验结果(符号)[5]的对比

    Figure  3.  Comparisons between calculated (curves) and experimental results (symbols)[5]about distance between shock wave and ignitor, height and width of deformed flame

    图  4  火焰区涡量变化

    Figure  4.  Vorticity variation of the flame zone

    图  5  火焰区内各输运项绝对值之和随时间的变化

    Figure  5.  Time histories of the sum of absolute values for per transport term within flame region

    图  6  火焰区内各输运项正负值之和随时间的变化

    Figure  6.  Time histories of the sum of positive and negative values for per transport term within flame zone

    图  7  火焰区内斜压项最大值和最小值随时间的变化

    Figure  7.  Time histories of max and min values of baroclinic term within flame zone

    图  8  火焰区内环量随时间的变化

    Figure  8.  Time histories of circulation

    表  1  火焰区域内的环量计算结果

    Table  1.   Calculated results of circulation within flame region

    激波运行阶段Γ/(m2·s-1)
    PBYKZ本文结果
    入射阶段20.378.7910.81
    反射阶段9.609.63
    下载: 导出CSV
  • [1] Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40. doi: 10.1063/1.881318
    [2] Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process[R]. AIAA, 1987: 87-1880.
    [3] Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J]. Combustion and Flame, 2007, 148(1/2): 4-47. http://www.sciencedirect.com/science/article/pii/s0010218006001817
    [4] Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]∥6th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1957: 387-398.
    [5] Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modeling, 2001, 5(4): 573-594. doi: 10.1088/1364-7830/5/4/304
    [6] Batley G A, Mcintosh A C, Brindley J, et al. A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame[J]. Journal of Fluid Mechanics, 1994, 279: 217-237. doi: 10.1017/S0022112094003897
    [7] Batley G A, Mcintosh A C, Brindley J. The baroclinic effect in combustion[J]. Mathematical and Computer Modelling, 1996, 24(8): 165-176. doi: 10.1016/0895-7177(96)00148-3
    [8] Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]∥27th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1998: 735-741.
    [9] Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame[J]. Combustion and Flame, 1999, 117(1/2): 99-116. http://www.sciencedirect.com/science/article/pii/S001021809800090X
    [10] Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999, 117(3): 323-339. http://www.sciencedirect.com/science/article/pii/S0010218098000765
    [11] Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999, 119(4): 400-416. http://www.sciencedirect.com/science/article/pii/S0010218099000589
    [12] Dong G, Fan B C, Ye J F. Numerical investigation of ethylene flame bubble instability induced by shock waves[J]. Shock Waves, 2008, 17(6): 409-419. doi: 10.1007/s00193-008-0124-3
    [13] 朱跃进, 董刚, 范宝春.受限空间内激波与火焰作用的三维计算[J].推进技术, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm

    Zhu Yue-jin, Dong Gang, Fan Bao-chun. Three-dimensional computation of the interactions between shock waves and flame in a confined space[J]. Journal of Propulsion Technology, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
    [14] Zhu Y J, Dong G, Liu Y X. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows[J]. Combustion Science and Technology, 2013, 185(10): 1415-1440. doi: 10.1080/00102202.2013.798656
    [15] 朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08

    Zhu Yue-jin, Dong Gang, Liu Yi-xin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
    [16] 都志辉.高性能计算之并行编程技术----MPI并行程序设计[M].北京: 清华大学出版社, 2001.
    [17] Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
    [18] Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
    [19] Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Physics of Fluids, 2009, 21(7): 074102. doi: 10.1063/1.3176474
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4049
  • HTML全文浏览量:  628
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-29
  • 修回日期:  2014-08-21
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回