Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

波形整形技术在Hopkinson杆实验中的应用

果春焕 周培俊 陆子川 常云鹏 邹广平 姜风春

徐小东, 李华良, 张涛. 基于夏比冲击试验的材料失效模型参数[J]. 爆炸与冲击, 2016, 36(1): 57-63. doi: 10.11883/1001-1455(2016)01-0057-07
引用本文: 果春焕, 周培俊, 陆子川, 常云鹏, 邹广平, 姜风春. 波形整形技术在Hopkinson杆实验中的应用[J]. 爆炸与冲击, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07
Xu Xiaodong, Li Hualiang, Zhang Tao. Parameters for the material failure model based on Charpy impact test[J]. Explosion And Shock Waves, 2016, 36(1): 57-63. doi: 10.11883/1001-1455(2016)01-0057-07
Citation: Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun. Application of pulse shaping technique in Hopkinson bar experiments[J]. Explosion And Shock Waves, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07

波形整形技术在Hopkinson杆实验中的应用

doi: 10.11883/1001-1455(2015)06-0881-07
基金项目: 国家自然科学基金项目(11172074, 11402060);中央高校基本科研业务费专项基金项目(HEUCFD15010)
详细信息
    作者简介:

    果春焕(1980—), 女, 博士, 讲师

    通讯作者:

    姜风春, fengchunjiang@hrbeu.edu.cn

  • 中图分类号: O347

Application of pulse shaping technique in Hopkinson bar experiments

  • 摘要: 由于波形整形技术可减小Hopkinson杆实验在撞击过程中产生的高频振荡以及实现试样在受载过程中的恒应变率加载,因此,波形整形技术越来越受到关注。本文中详细介绍了波形整形技术在Hopkinson杆的动态压缩、拉伸、巴西圆盘、弯曲断裂等实验中的研究进展,并给出了该技术在应用中需注意的问题。
  • 在爆炸冲击领域,材料的动态破坏问题一直是研究的热点和难点[1]。相关研究一般需要从材料实验入手,常见的实验有:拉伸、压缩及剪切等准静态实验,Hopkinson压杆、泰勒杆及夏比冲击试验等动态实验[2-6]。由于测量技术的限制,实验一般只能测定较宏观的物理量,而全面深刻地表征材料的力学特性,还需要结合高精度的有限元模拟。

    材料失效模型是模拟结构破坏的关键,相关研究很多。通过对铝合金试件进行的大量研究,有了一个基于材料宏观破坏失效应变的BW(Bao Yingbin-Wierzbickis)失效模型,这种失效模型将断裂分为3种模型:韧性断裂模式、剪切断裂模式及混合断裂模式,适用范围较广[7-8]。Y.W.Lee[9]基于平面应力状态模型实验对BW失效准则进行了修正,通过引入断裂主应变空间概念,给出了基于失效主应变的FFLD(fracture forming limit diagram)失效模型。M.Luo等[10]提出了一种基于拉伸与弯曲耦合作用下的MMC(modified Mohr-Coulomb)断裂失效模型。而工程上应用最广的是JC本构和失效模型[11],该模型是很多学者进行材料力学性能研究的基础[12-13]。对于金属材料,JC本构模型能较好地反映材料塑性强化、应变率硬化和温度软化效应,而且形式相对简单。相应的JC失效模型则充分考虑了应力三轴度、应变率和温度对材料失效应变的影响,模型参数具有明确的物理意义。然而,针对工程上的具体材料,相应的模型参数一般需要进行一系列材料实验才能得到,尤其应变率相关的参数的实验,复杂且价格昂贵。

    Q370d钢强度高、韧性好,在桥梁、船舶等焊接结构中应用广泛[14]。本文中,结合夏比冲击试验[15]和数值模拟,利用正交设计和回归分析对Q370d钢的JC失效模型参数进行研究,试图探索获取JC失效模型参数的方法。

    图 1为V型缺口试样的有限元模型图,笛卡尔坐标系Oxy平面为冲击平面。试件横截面厚度为B,高度为W,长度为L,V型缺口试件的深度为a。标准试样无V型缺口。

    图  1  夏比冲击试验V型缺口试件的几何、网格图
    Figure  1.  Geometry and grid for Charpy V-notch test specimen

    撞击平面内,区域1为缺口及刀刃撞击区,应力梯度变化大,单元需准确模拟材料的塑性及破坏,采用精细网格(0.1 mm);区域2为弹性应力波传播区,由3级1:2过渡为粗网格;区域3为砧座接触区,为了准确模拟砧座接触力,由2级2:1过渡为较密网格。横向采用全均匀网格,为了保持断裂区单元较好的形状比,横向网格尺寸统一为0.1 mm。虽然这样处理会使弹性区域网格形状比过大,但由于横向应力梯度变化较小,这种网格不会导致较大误差。摆锤与砧座简化为解析刚体,与试件之间定义自动接触。

    材料采用JC本构模型和失效模型进行描述,表达式分别为:

    σy=(d1+d2εnp)(1+d3ln˙ε/˙ε0)(1Tm) (1)
    ¯εplD=[D1+D2exp(D3σ)](1+D4ln˙ε/˙ε0)(1+D5T) (2)

    式中:˙ε0为准静态实验应变率,一般取10-4 s-1T*=(TTr)/(TmT),Tr时室温,Tm为材料熔点,¯εplD为材料的临界失效应变函数,σ*为应力三轴度(平均应力σm与Mises应力σ的比值),其他为材料参数。忽略温度因素,Q370d钢的JC本构模型参数分别为:d1=350.40 MPa,d2=565.16 MPa,n=0.483,d3=0.019。其中,d1d2n通过圆棒准静态拉伸实验获得,而应变率参数d3由于实验条件有限,参考了文献[16]。下面对3种厚度的无缺口试件进行实验和数值模拟。如图 2所示,试件厚度W分别为4、5和6 mm,每组厚度为两个试件,共6个,实验结果取平均值。在300 J的摆锤试验机上进行实验,摆锤初始冲击速度为5.2 m/s。定义实验后试件中横截面上的两个特征参数为dtdc,试件长度方向上的特征参数为l(见表 1)。由表 1可以看到:3种厚度试件的冲击功值,数值模拟与实验的误差在3%之内,变形后特征参数的误差不超过7%,这表明数值模型和本构参数有较高精度。

    图  2  标准试件的最终变形
    Figure  2.  Final deformation of the standard specimens
    表  1  标准试件的实验和数值模拟结果
    Table  1.  Experimental and simulated results of the standard specimens
    W/mm Ak, exp/J Ak, num/J εAk/% dt, exp/mm dt, num/mm εdt/% dc, exp/mm dc, num/mm εdc/% lexp/mm lnum/mm εl/%
    4 181.7 180.3 -0.8 6.86 7.26 5.8 2.52 2.69 6.7 24.93 23.89 -4.2
    5 226.6 224.7 -0.8 8.17 8.71 6.6 3.22 3.39 5.3 25.37 24.04 -5.5
    6 277.8 270.6 -2.6 9.40 9.94 5.7 3.91 4.09 4.6 25.33 23.87 -6.1
    下载: 导出CSV 
    | 显示表格

    为了考察不同网格尺寸对数值模拟结果的影响,取一组典型的失效模型参数(D1=0.177, D2=3.825, D3=1.845,D4=0),采用二维模型,对试件的断裂区分别划分5种不同尺寸网格,讨论模型对网格的敏感性和依赖性,结果对比见表 2。表中,Δd为最大网格尺寸,Ak1为不考虑失效模型的冲击功,Ak2为考虑失效模型的冲击功,Fm为摆锤的最大冲击力。

    表  2  不同断裂区网格尺寸下的冲击功、摆锤冲击力
    Table  2.  Impact energy and pendulum forcein plane models with different mesh sizes
    Δd/mm Ak1/J Ak2/j Fm/kN
    0.300 14.69 9.45 0.417
    0.200 14.69 8.12 0.334
    0.100 14.78 7.14 0.277
    0.075 14.81 7.36 0.291
    0.050 14.81 6.99 0.275
    下载: 导出CSV 
    | 显示表格

    可以看到:在不引入失效模型,冲击功对网格敏感性较小,断裂区网格最大尺寸为0.3 mm就能达到较高精度,冲击功变化值不到1%。而在考虑材料失效的情况下,最大网格尺寸在小于0.1 mm后趋于稳定,冲击功值变化小于5%,同时摆锤的最大冲击力也随之趋于稳定。因此,综合考虑计算资源以及计算精度,断裂区的最大网格尺寸选为0.1 mm。

    材料的失效过程一般包括损伤起始和损伤演化两个过程。如图 3所示,在F点及F点之前D=0,材料单元没有发生任何损伤,在GD=1,材料单元完全破坏,在FG段之间的点,则将材料刚度乘以缩减系数(1~D),模拟材料的塑性软化。

    图  3  材料破坏的典型应力应变曲线
    Figure  3.  Typical stress-strain curvesduring the material damage progress

    对于JC失效模型,损伤起始方程(式(2))为3个表达式相乘,分别表征应力三轴度、应变率和温度的影响,各表达式之间参数不相互影响,共包含D1~D5等5个参数。对于应变率参数D4,一般需要进行不同应变率的实验,而夏比冲击试验应变率水平一般在103~5×103 s-1范围,不能反映材料在不同应变率下的特性,因此难以单纯通过夏比冲击试验对D4进行优化拟合。而温度参数D5对实验条件要求较高,所以在忽略温度影响的情况下,本文中只对D1D2D3等3个参数进行优化拟合。

    对于损伤演化参数,一般采用等效塑性变形upl或断裂能Gf来定义,对于金属材料一般建议采用upl,其定义如下:˙¯upl=Le˙¯εpl,其中Le为单元的特征长度。当单元的等效塑性变形upl到达upl, f时,单元材料完全破坏。但很难通过实验直接得到upl, f具体值,一般取单向拉伸实验得到的延伸率乘以单元长度[17]。本文中单元长度为0.1 mm,材料的延伸率通过拉伸实验测得为0.21,因此upl, f取0.021。

    这里设计不同参数水平,通过数值模拟得到参数与冲击功的分析样本,再通过回归分析得到冲击功与模型参数之间的回归方程,最后结合夏比冲击试验冲击功来求解回归方程组。各参数取5个水平,D1∈(0.15, 0.2, 0.25, 0.3, 0.35), D2∈(3, 4, 5, 6, 7), D3∈(-1.8, -2.2, -2.6, -3.0, -3.4),共25种组合方案,对3种厚度(W=10, 6, 4 mm)的V型缺口试件,共进行了75次计算,试件的冲击吸收功Ak表 3

    表  3  JC失效模型的正交设计试验表
    Table  3.  Orthogonal design parameters for JC failure model
    No. D1 D2 D3 Ak/J
    W=10 mm W=6 mm W=4 mm
    1 0.15 3 -1.8 151.57 89.04 57.61
    2 0.15 4 -2.2 130.82 79.83 53.25
    3 0.15 5 -2.6 113.26 67.86 46.08
    4 0.15 6 -3.0 95.71 56.69 38.84
    5 0.15 7 -3.4 81.50 47.67 32.54
    6 0.20 3 -2.6 97.34 56.13 44.43
    7 0.20 4 -3.0 92.88 54.81 34.06
    8 0.20 5 -3.4 91.53 48.69 33.76
    9 0.20 6 -1.8 287.76 185.80 107.57
    10 0.20 7 -2.2 253.14 160.20 100.67
    11 0.25 3 -3.4 87.83 48.38 31.22
    12 0.25 4 -1.8 232.39 137.77 84.92
    13 0.25 5 -2.2 203.56 122.17 77.73
    14 0.25 6 -2.6 169.53 103.94 67.87
    15 0.25 7 -3.0 150.13 87.96 57.72
    16 0.30 3 -2.2 160.57 91.74 57.25
    17 0.30 4 -2.6 152.92 87.35 54.97
    18 0.30 5 -3.0 141.67 80.70 50.92
    19 0.30 6 -3.4 129.61 73.81 46.59
    20 0.30 7 -1.8 288.63 193.92 114.43
    21 0.35 3 -3.0 130.85 73.26 44.74
    22 0.35 4 -3.4 128.04 71.75 43.96
    23 0.35 5 -1.8 286.80 179.69 103.27
    24 0.35 6 -2.2 268.54 162.92 98.42
    25 0.35 7 -2.6 230.74 138.54 87.47
    下载: 导出CSV 
    | 显示表格

    采用线性变换对所有自变量及因变量进行归一化处理,分别将各参数取值的范围映射到区间[-1, 1]上,变换后的变量加上横线来区分。考虑参数之间的相互影响,引入D1D2D3,二次非线性项D12D22D32和交叉乘积项D1D2D1D3D2D3。利用SPSS程序进行逐步回归,得到:

    {¯Ak,410=0.234¯D1+0.388¯D20.693¯D3+0.132¯D230.232¯D2¯D30.306¯Ak,610=0.261¯D1+0.378¯D20.687¯D3+0.215¯D230.254¯D2¯D30.391¯Ak,1010=0.333¯D1+0.373¯D20.719¯D3+0.207¯D230.205¯D2¯D30.285 (3)

    每种厚度试件为3个,共9个试件T1~T9,冲击实验结果如图 4~5所示。T1~T9的冲击功分别为208.3、203.1、199.4、104.9、106.7、112.0、55.5、55.7、56.7 J。

    图  4  V型缺口试件的最终变形
    Figure  4.  Final deformation of V-notch specimens
    图  5  实验冲头力
    Figure  5.  Experimental punch loads

    将实验得到的冲击功各自归一化后代入回归方程的左边,则由回归方程(3)得到以D1D2D3为变量的非线性方程,采用最小二乘法求解,得到近似解:D1=(D1=0.587, D2=1.975, D3=-3.586)。可以看到:近似解的值均不在参数设定的取值范围内,为外插型。为了进一步提高计算精度,在近似解附近增加了一个三水平D1∈(0.5, 0.6, 0.7)、D2∈(1.0, 2.0, 3.0)、D3∈(-3.0, -3.5, -4.0)的正交设计试验,按照前面的方法可以求得近似解D2=(D1=0.788, D2=1.835, D3=-3.275)。

    D2代入数值模型计算,得到W为10、6、4 mm的冲击功分别为187.62、105.72、59.77 J,与实验平均值200.6、107.87、56.97 J相比,误差分别为-6.5%、-2.0%、4.9%,基本上吻合。而不同厚度试件的误差不同,可能源自其应力三轴度分布水平的差别。从冲击力曲线(见图 6)看,数值模拟结果比实验的大,原因可能为在断裂破坏时,截面附近材料瞬间温度升高,材料发生温度软化效应,导致冲头撞击力的峰值下降,冲头位移增大,而计算模拟中没考虑温度影响。另外,JC失效模型与材料实际破坏情况可能有一定差异。图 7为V型缺口试件计算的最终变形。

    图  6  计算和实验的冲头力
    Figure  6.  Computed and experimental punch loads
    图  7  V型缺口试件计算的最终变形及观测点
    Figure  7.  Computed final deformation of V-notch specimensand location of observation points

    以4 mm厚试件为例,图 8给出了试件断裂截面上部分观测点单元(见图 7)等效应力-等效塑性应变的关系,这些曲线与材料的JC本构方程(式(1))比较吻合,一些观测点在破坏前还经历了卸载。发生材料破坏单元的应力最终都减小到零,单元发生初始损伤的点是曲线出现折角的地方,对应曲线上标点的位置,随后材料损伤累积直到破坏。忽略弹性变形能,由Epl=¯εpl,f0¯σd¯εplGf=ˉεpl,fˉεpl,0¯σd¯εpl,可以得到单元的塑性变形能密度Epl和单元的断裂能密度Gf(损伤点后的曲线面积),两者比φ=¯Gf/¯Epl, 可以作为材料抗脆性断裂的衡量指标,比值越大表明材料抗脆性断裂能力越强。计算得到W为10、6、4 mm试件的φ值依次为0.159、0.157、0.148,可见随着截面尺寸的减小,其抗脆性断裂能力减小。

    图  8  观测点的等效塑性应变与等效应力曲线
    Figure  8.  Curves of equivalent stress vsequivalent plastic strain at observation points

    应力三轴度是影响材料损伤失效的重要因素,截面上应力三轴度不同可能导致不同厚度试件误差大小有所差异。从试件变形图看到,试件缺口端附近观测点始终处于拉伸状态(左),另一端由压缩状态进入拉伸状态(右),分别选取两端破坏的单元作为观测点,给出了应力三轴度-等效塑性应变曲线,如图 9所示。可见由于单元失效,曲线末端近似垂直线段。不同截面尺寸上,各单元的应力三轴度变化趋势基本一致。同一观测点,试件截面越窄,应力三轴度水平越小,且曲线变化趋势有明显的滞后现象。

    图  9  试件断裂截面上单元应力三轴度曲线
    Figure  9.  Stress triaxiality curves of observation elements at the fracture cross-sections of specimens

    材料宏观破坏时吸收的能量是表征材料破坏力学性能的一个重要指标,探究夏比冲击试验试件的冲击功与损伤失效模型参数之间的关系是研究材料动态力学性能的一种思路。本文中在对有限元模型及本构参数验证的基础上,结合正交设计和回归分析,通过夏比V型缺口试验及数值模拟,探讨了冲击吸收功与失效模型参量之间的关系,得到了Q370d钢一组具有工程适用价值的JC失效模型参数(D1=0.788, D2=1.835, D3=-3.275)。这种结合正交设计和回归分析研究材料动态失效参数的思路是可行的。

  • 图  1  带有预加载杆和虚拟试样的Hopkinson压杆装置系统[13]

    Figure  1.  Hopkinson pressure bar apparatus with pre-loading bar and dummy specimen[13]

  • [1] Gerlach R, Sivasubramaniam K, Sathianathan C S, et al. A novel method for pulse shaping of split Hopkinson tensile bar signals[J]. International Journal of Impact Engineering, 2011, 38(12): 976-980. doi: 10.1016/j.ijimpeng.2011.08.007
    [2] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London Series a-mathematical Physical and Engineering Sciences, 1991, 435(11): 371-391. http://rspa.royalsocietypublishing.org/content/435/1894/371.abstract
    [3] Gerlach R, Kettenbeil C, Petrinic N. A new split Hopkinson tensile bar design[J]. International Journal of Impact Engineering, 2012, 50(12): 63-67. http://www.sciencedirect.com/science/article/pii/S0734743X1200156X
    [4] Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
    [5] Duffy J, Campbell J D, Hawley R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-O aluminum[J]. Transactions of the ASME, Journal of Applied Mechanics, 1971, 38(1): 83-91. doi: 10.1115/1.3408771
    [6] Jiang F, Vecchio K S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(060902): 1-39. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AMREAD000062000006060802000001&idtype=cvips&gifs=Yes
    [7] Chuban V D, Ivanteyev V I, Chudayev B J, et al. Numerical simulation of flutter validated by flight-test data for TU-204 aircraft[J]. Computer Structure, 2002, 80(32): 2551-2563. doi: 10.1016/S0045-7949(02)00221-3
    [8] Saeedi M A, Barkhordari M A. Dynamic behaviour of space structures using models of different pattern density[J]. Computing Developments in Civil and Structural Engineering, 1999: 59-63. http://www.researchgate.net/publication/269077713_Dynamic_Behaviour_of_Space_Structures_using_Models_of_Different_Pattern_Density
    [9] Sinha G, Mukhopadhyay M. Transient dynamic response of arbitrary stiffened shells by the finite element method[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 1995, 117(1): 11-16. doi: 10.1115/1.2873855
    [10] Ghoshal A, Harrison J, Sundaresan M J, et al. Damage detection testing on a helicopter flexbeam[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(5): 315-330. doi: 10.1106/9V39-ETJU-DNMG-TJUF
    [11] 宋博, 姜锡权, 陈为农.霍普金森压杆实验中的脉冲整形技术[C]//第三届全国爆炸力学实验技术交流会论文集.合肥, 2004: 1-70.
    [12] Christensen R J, Swanson S R, Brown W S. Split-Hopkinson-bar tests on rocks under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513. doi: 10.1007/BF02320747
    [13] Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates[J]. Journal of Physics E: Science Instrument, 1982, 15(3): 280-282. doi: 10.1088/0022-3735/15/3/009
    [14] Parry D J, Walker A G, Dixon P R. Hopkinson bar pulse smoothing[J]. Measurement Science & Technology, 1995, 6(5): 443-446.
    [15] Cloete T J, Westhuizen A V, Kok S, et al. A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone[J]. DYMAT International Conferences, 2009, 1: 901-907. http://www.researchgate.net/publication/46251659_A_tapered_striker_pulse_shaping_technique_for_uniform_strain_rate_dynamic_compression_of_bovine_bone
    [16] Li X B, Lok T S, Zhao J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(7): 1055-1060. http://www.sciencedirect.com/science/article/pii/S136516090000037X
    [17] Li X B, Lok T S, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21-39.
    [18] Lok T S, Asce M, Zhao P J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 54-59. http://www.researchgate.net/publication/245307944_Impact_Response_of_Steel_Fiber-Reinforced_Concrete_Using_a_Split_Hopkinson_Pressure_Bar
    [19] Baranowski P, Malachowski J, Gieleta R, et al. Numberical study for determination of pulse shaping design variables in SHPB apparutus[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(2): 459-466. doi: 10.2478/bpasts-2013-0045
    [20] Naghdabadi R, Ashrafi M J, Arghavani J. Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test[J]. Material Science and Engineering: A, 2012, 539(3): 285-293. http://www.sciencedirect.com/science/article/pii/S0921509312001311
    [21] Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF02411056
    [22] Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2): 186-195. doi: 10.1007/BF02428192
    [23] Ramirez H, Gonzalez R C. Finite-element simulation of wave propagation and dispersion in Hopkinson bar test[J]. Materials and Design, 2006, 27(1): 36-44. doi: 10.1016/j.matdes.2004.08.021
    [24] 李夕兵, 周子龙, 王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003

    Li Xi-bing, Zhou Zi-long, Wang Wei-hua. Construction of ideal striker for SHPB device based on FEM and neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003
    [25] Franz C E, Follansbee P S, Wright J. New experimental techniques with the split Hopkinson pressure bar[C]//Berman I, Schroeder J W. 8th Internatinal Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, ASME. San Antonio, TX, 1984.
    [26] Follansbee P S. Mechanical testing and evaluations[M]. ASM Handbook, ASM, Materials Park, OH, 1985.
    [27] Woo S C, Kim J T, Cho C H, et al. The dynamic compressive behavior of armor structural materials in split Hopkinson pressure bar test[J]. The Journal of Strain Analysis for Engineering Design, 2013, 48(7): 420-4369. doi: 10.1177/0309324713496084
    [28] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978

    Tao Jun-lin, Tian Chang-jin, Chen Yu-ze, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB[J]. Explosion and Shock Waves, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978
    [29] Vecchio K S, Jiang F. Improved pulse shaping to achieve constant strain rate and stress equilibrium in split Hopkinson pressure bar testing[J]. Metallurgical and Materials Transactions: A, 2007, 38(11): 2655-2665. doi: 10.1007/s11661-007-9204-8
    [30] Lee O S, Jin S P. Dynamic deformation behavior of bovine femur using SHPB[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2211-2215. doi: 10.1007/s12206-011-0602-x
    [31] Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513-514(7): 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890
    [32] 汪洋, 李玉龙, 刘传雄.利用SHPB测定高应变率下冰的动态力学行为[J].爆炸与冲击, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05

    Wang Yang, Li Yu-long, Liu Chuan-xiong. Dynamic mechanical behaviors of ice at high strain rates[J]. Explosion and Shock Waves, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05
    [33] Chen W, Luo H. Dynamic Compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment[J]. Experimental Mechanics, 2004, 44(3): 295-299. doi: 10.1007/BF02427896
    [34] Yokoyama T, Nakai K, Yatim N H M. High strain-rate compressive behavior of bulk structural adhesives: Epoxy and methacrylate adhesives[J]. Journal of Solid Mechanics and Materials Engineering, 2012, 6(2): 131-143. http://adsabs.harvard.edu/abs/2012jsmme...6..131y
    [35] Chen W, Lu F, Zhou B. A quartz-crystal-embeded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6. doi: 10.1007/BF02327540
    [36] Song B, Syn C J, Grupido C L, et al. A long split Hopkinson pressure bar(LSHPB)for intermediate-rate characterization of soft materials[J]. Experimental Mechanics, 2008, 48(6): 809-815. doi: 10.1007/s11340-007-9095-z
    [37] 赵习金, 卢芳云, 王悟, 等.入射波整形技术的实验和理论研究[J].高压物理学报, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007

    Zhao Xi-jin, Lu Fang-yun, Wang Wu, et al. The experimental and theoretical study on the incident pulse shaping technique[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007
    [38] 卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M].北京: 科学出版社, 2013.
    [39] Erzar B, Forquin P. An experimental method to determine the tensile strength of concrete at high rates of strain[J]. Experimental Mechanics, 2010, 50(7): 941-955. doi: 10.1007/s11340-009-9284-z
    [40] Shazly M, Prakash V, Draper S. Mechanical behavior of Gamma-met PX under uniaxial loading at elevated temperatures and high strain rates[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6485-6503. https://www.sciencedirect.com/science/article/pii/S0020768304002410
    [41] Saksala T, Hokka M, Kuokkala V, et al. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 59(4): 128-138. http://www.sciencedirect.com/science/article/pii/S1365160912002468
    [42] Chen R, Dai F, Qin J, Lu F. Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids[J]. Experimental Mechanics, 2013, 53(7): 1153-1159. doi: 10.1007/s11340-013-9733-6
    [43] Dong S, Wang Y, Xia Y. A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic frac-ture behavior of brittle polymer materials[J]. Polymer Testing, 2006, 25(7): 943-952. doi: 10.1016/j.polymertesting.2006.06.003
    [44] Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791. doi: 10.1007/s11340-009-9273-2
    [45] Dai F, Chen R, Iqbal M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(4): 606-613. https://www.sciencedirect.com/science/article/pii/S1365160910000535
    [46] vora V M F, Jain N, Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites[J]. Materials Science and Engineering: A, 2003, 361(1/2): 358-366. https://www.sciencedirect.com/science/article/pii/S0921509303005367
    [47] Jiang F, Vecchio K S, Rohatgi A. Analysis of modified split Hopkinson pressure bar dynamic fracture test using an inertia model[J]. International Journal of Fracture, 2004, 126(2): 143-164. doi: 10.1023/B:FRAC.0000026363.05467.2b
    [48] Ogawa K, Higashida F. Impact three-point bending tests by applying ramped incident wave[J]. Reinforced Plastics, 1990, 36: 123-129.
    [49] Kusaka T, Yamauchi Y, Kurokawa T. Effects of strain rate on mode Ⅱ interlaminar fracture toughness in carbon-fibre/epoxy laminated composites[J]. Journal de Physique Ⅳ: C, 1994, 4(8): 671-676. https://hal.archives-ouvertes.fr/docs/00/25/33/43/PDF/ajp-jp4199404C8102.pdf
    [50] Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode Ⅱ interlaminar fracture toughness of composite laminates under dynamic loading[J]. Key Engineering Materials, 1998, 141/142/143: 477-500. https://www.scientific.net/KEM.141-143.477
    [51] Todo M, Takahashi K. Measurement of dynamic fracture toughness of polymeric materials using impact bend test[J]. Engineering Science Reports, Kyushu University, 1998, 20: 267-273. https://www.sciencedirect.com/science/article/pii/S0142941809001056
    [52] Todo M, Tanaka A, Arakawa K. Examination of SHPB type impact fracture toughens testing method by dynamic finite element analysis[J]. Society of Materials Science of Japan, 2006, 55(9): 813-818. doi: 10.2472/jsms.55.813
    [53] Jiang F, Vecchio K S. Dynamic effects in Hopkinson bar four-point bend fracture[J]. Metallurgical and Materials Transactions: A, 2007, 38(12): 2896-2906. doi: 10.1007/s11661-007-9301-8
    [54] Nakamura T, Shih C F, Freund L B. Elastic-plastic analysis of a dynamically loaded circumferentially notched round bar[J]. Engineering Fracture Mechanics, 1985, 22(3): 437-452. doi: 10.1016/0013-7944(85)90144-4
    [55] Wang Q Z, Jia X M. The flattened Brazilian disc specimen used for testing elastic, modulus, tensile strength and fracture toughness of brittle rocks: Analysis and numerical results[J]. International Journal of Rock Mechanics and Minner Science, 2004, 41(2): 245-253. doi: 10.1016/S1365-1609(03)00093-5
    [56] Wang Q Z, Li W, Song X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5): 1091-1100. doi: 10.1007/s00024-006-0056-8
    [57] 张盛, 王启智.采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J].岩土工程学报, 2006, 28(6): 723-728.

    Zhang Sheng, Wang Qi-zhi. Method for determination of dynamic fracture toughness of rock using holed-crack flattened disc specimen[J]. Chinese Journal of Geotechical Engineering, 2006, 28(6): 723-728.
    [58] Bacon C, Färm J, Lataillade J L. Dynamic fracture toughness determined from load-point displacement[J]. Experimental Mechanics, 1994, 20(1): 217-223. doi: 10.1007/BF02319758
  • 加载中
图(1)
计量
  • 文章访问数:  4256
  • HTML全文浏览量:  523
  • PDF下载量:  787
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-16
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-12-10

目录

/

返回文章
返回