高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析

李典 朱锡 侯海量 仲强

李典, 朱锡, 侯海量, 仲强. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1-8. doi: 10.11883/1001-1455(2016)01-0001-08
引用本文: 李典, 朱锡, 侯海量, 仲强. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1-8. doi: 10.11883/1001-1455(2016)01-0001-08
Li Dian, Zhu Xi, Hou Hailiang, Zhong Qiang. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion And Shock Waves, 2016, 36(1): 1-8. doi: 10.11883/1001-1455(2016)01-0001-08
Citation: Li Dian, Zhu Xi, Hou Hailiang, Zhong Qiang. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion And Shock Waves, 2016, 36(1): 1-8. doi: 10.11883/1001-1455(2016)01-0001-08

高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析

doi: 10.11883/1001-1455(2016)01-0001-08
基金项目: 

国家自然科学基金项目 51179200

国家自然科学基金项目 51209211

详细信息
    作者简介:

    李典(1990—),男,硕士研究生

    通讯作者:

    侯海量, hou9611104@163.com

  • 中图分类号: O344.7

Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration

  • 摘要: 为探讨高速弹体侵彻下蓄液结构的防护方法,采用瞬态非线性有限元,研究了高速杆式弹体侵彻下蓄液结构承受的冲击载荷特性,分析了冲击载荷的作用过程、前后板承受的载荷强度及其弹体初速度和水域尺度的影响。结果表明:弹体在蓄液结构中的初始开坑作用,将形成入射冲击波,其压力峰值极高,但作用时间短,并将在液体内产生多次反射;弹体在液体中的侵彻,将产生空化,并形成峰值小、作用时间长的空化压力载荷;后板对液体流的阻碍作用将形成出口局部高压;入射冲击波和出口局部高压的强度随着弹体初速度的增加而增大,随着水域长度的增加而不断减小。根据所受冲击载荷特性的不同,将前、后板分别划分为3个不同的区域,并建立了每个分区的简化计算模型。
  • 图  1  1/2蓄液结构计算模型示意图

    Figure  1.  Sketch of finite element modelfor half liquid-filled structure

    图  2  水域和空气域网格示意图

    Figure  2.  Mesh of the water and air

    图  3  弹体侵彻蓄液结构载荷作用过程(v0=1 000 m/s)

    Figure  3.  Load process of the liquid-filled structure subjected to projectile penetration

    图  4  前后板区域划分示意图

    Figure  4.  Sketch of division of the front and rear plates

    图  5  前板各区域载荷特性

    Figure  5.  Load characteristics of each division of the front plate

    图  6  后板各区域载荷特性

    Figure  6.  Load characteristics of each division of the rear plate

    图  7  前板的比冲量及压力峰值(v0=1 000 m/s, L=100 mm)

    Figure  7.  Specific impulses and peak pressures of the front plate

    图  8  后板的比冲量及压力峰值(v0=1 000 m/s, L=100 mm)

    Figure  8.  Specific impulses and peak pressures of the rear plate

    图  9  不同初速下前板的比冲量及压力峰值

    Figure  9.  Specific impulses and peak pressures of the front plate at different initial velocities

    图  10  不同初速下后板的比冲量及压力峰值

    Figure  10.  Specific impulses and peak pressures of the rear plate at different initial velocities

    图  11  不同水域长度下前板的比冲量及压力峰值

    Figure  11.  Specific impulses and peak pressures on the front plate at different lengths of waters

    图  12  不同水域长度下后板的比冲量及压力峰值

    Figure  12.  Specific impulses and peak pressures on the rear plate at different lengths of waters

  • [1] Lecysyn N, Dandrieux A, Heymes F, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2/3):587-594. http://cn.bing.com/academic/profile?id=cbce25e6101d6d2274427107153dea89&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Disimile P J, Toy N, Swanson L A. A large-scale shadowgraph technique applied to hydrodynamic ram[J]. Journal of Flow Visualization & Image Processing, 2009, 16(4):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4c766726c6f5629d9732baabe2cf211
    [3] McMillen J H. Shock wave pressures in water produced by impact of smallspheres[J]. Physical Review, 1945, 68(9/10):198-209. https://www.researchgate.net/publication/243691996_Shock_Wave_Pressures_in_Water_Produced_by_Impact_of_Small_Spheres
    [4] McMillen J H, Harvey E N. A spark shadowgraphic study of body waves in water[J]. Journal of Applied Physics, 1946, 17(7):541-555. doi: 10.1063/1.1707751
    [5] Disimile P J, Davis J, Toy N, et al. Mitigation of shock waves within a liquidfilled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. http://cn.bing.com/academic/profile?id=1ab5bf55e1ad5f29afacb898fefa4d91&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Townsend D, Park N, Devall P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29:723-733. doi: 10.1016/j.ijimpeng.2003.10.019
    [7] Borg J P, Cogar J R, Tredways S, et al. Damage resulting from high speed projectile liquid filled metal tanks[C]//Wassex Institute of Technologies Press. 2001: 889-902.
    [8] Varas D, Zaera R, Lopez-Puente J. Numerical modeling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. doi: 10.1016/j.ijimpeng.2008.07.020
    [9] Lecysyna N, Bony-Dandrieux A, Aprin L. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1):635-643. http://cn.bing.com/academic/profile?id=210f94ef627d0d1fa1b4ca020b886c7a&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Lecysyn N, Dandrieux A, Heymes F, et al. Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6):627-634. doi: 10.1016/j.jlp.2008.06.006
  • 加载中
图(12)
计量
  • 文章访问数:  4088
  • HTML全文浏览量:  951
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-14
  • 修回日期:  2015-02-02
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回