Perforation modes of double-layered plates with air space struckby a blunt rigid projectile
-
摘要: 平头弹贯穿单层金属靶,随着靶厚的增加和弹速的增高,穿甲模式均可能由剪切冲塞向绝热剪切冲塞转换。因此,对于双层或多层靶的穿甲,其不同层的靶板失效模式可能是不同的。本文中对相关的平头弹穿甲Weldox 700E单层及双层间隙式钢靶的实验数据进行分析,讨论其穿甲模式。弹速较高时,贯穿第1层靶发生绝热剪切失效,弹速降低,贯穿第2层靶板发生绝热剪切失效或剪切冲塞失效, 最终失效模式为绝热剪切和剪切冲塞混杂。Abstract: In the cases of the perforation of a single-layered metal plate struck by a blunt rigid projectile, along with the increase of the plate thickness and that of the projectile velocity, the failure mode of the metal plate may transform from shear plugging to adiabatic shear plugging. Therefore, regarding the perforation of double-layered or multi-layered plates, the failure modes of various plates can be quite different. In this work we investigated these different perforation modes by conducting experimental analyses on the perforations of single- and double-layered Weldox E steel plates with air space. Our results indicate that, in the case of a higher initial striking velocity, the failure mode of the first layer plate is adiabatic shear plugging, while that of the second layer plate is adiabatic shear plugging or shear plugging as the striking velocity of the projectile slows down. We conclude that the final failure mode of the double-layered plates is the mixture of both shear plugging and adiabatic shear plugging.
-
表 1 实验结果和数值模拟结果
Table 1. Experimental results and numerical simulation results
vi/(m·s-1) vr/(m·s-1) 实验[1] 剪切冲塞模型 绝热剪切冲塞模型 绝热/剪切冲塞混杂模型 第1层 第2层 第1层 第2层 第1层 第2层 400.0 - 317.5 275.8 309.5 254.9 309.5 254.9 380.0 - 300.1 258.3 291.6 235.3 291.6 235.3 360.0 - 282.7 240.5 273.6 214.8 273.6 214.8 351.1 189.9 274.9 232.5 265.4 205.3 265.4 205.3 330.0 - 256.3 213.0 245.9 180.9 245.9 180.9 309.4 89.8 238.0 193.1 226.5 157.2 226.5 157.2 297.0 155.6 226.8 180.7 214.5 143.8 214.5 143.8 296.7 97.7 226.6 180.4 214.2 142.3 214.2 142.3 296.0 - 225.9 179.6 213.5 141.1 213.5 141.1 295.5 - 225.5 179.1 213.0 0 213.0 140.4 282.6 86.4 213.7 165.5 200.2 0 200.2 127.2 270.8 96.6 202.9 152.1 188.1 0 188.1 113.4 269.3 128.4 201.5 150.4 186.6 0 186.6 111.5 261.0 - 193.7 140.1 177.8 0 177.8 96.3 260.3 - 193.1 139.2 177.0 0 177.0 0 259.7 73.3 192.5 138.4 176.3 0 176.3 0 255.0 - 188.1 132.1 171.2 0 171.2 0 251.7 0 184.9 127.3 167.5 0 167.5 0 249.1 101.7 182.4 123.3 164.5 0 164.5 0 244.0 69.6 177.5 114.4 158.6 0 158.6 0 238.0 - 171.7 98.2 151.2 0 151.2 0 237.5 - 171.2 0 150.6 0 150.6 0 225.2 0 159.0 0 133.7 0 133.7 0 -
[1] Dey S, Bϕrvik T, Teng X, et al. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation[J]. International Journal of Solids and Structures, 2007, 44(20):6701-6723. doi: 10.1016/j.ijsolstr.2007.03.005 [2] 张伟, 肖新科, 郭子涛, 等.双层A3钢靶对平头杆弹的抗侵彻性能研究[J].高压物理学报, 2012, 26(2):163-170. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201202008.htmZhang Wei, Xiao Xinke, Guo Zitao, et al. Investigation on the ballistic resistance of double-layered A3 steel targets against blunt projectile impact[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):163-170. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201202008.htm [3] Teng X, Dey S, Bϕrvik T, et al. Protection performance of double-layered metal shields against projectile impact[J]. Journal of Mechanics of Materials and Structures, 2007, 2(7):1309-1330. doi: 10.2140/jomms [4] Woodward R L, Cimpoeru S J. A study of the perforation of aluminium laminate targets[J]. International Journal of Impact Engineering, 1998, 21(3):117-131. doi: 10.1016/S0734-743X(97)00034-1 [5] 邓云飞, 张伟, 曹宗胜.间隙对A3钢薄板抗卵形头弹侵彻性能影响的实验研究[J].振动与冲击, 2013, 32(12):95-99. doi: 10.3969/j.issn.1000-3835.2013.12.018Deng Yunfei, Zhang Wei, Cao Zongsheng. Effect of gap on the ballistic performance of double-layered A3 steel shields against ogival rigid projectiles[J]. Journal of Vibration and Shock, 2013, 32(12):95-99. doi: 10.3969/j.issn.1000-3835.2013.12.018 [6] Liang C C, Yang M F, Wu P W, et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application[J]. Ocean Engineering, 2005, 32(3):441-468. http://cn.bing.com/academic/profile?id=c75169062d5b4f71d71d96545f7b3a42&encoded=0&v=paper_preview&mkt=zh-cn [7] Recht R F, Ipson T W. Ballistic perforation dynamics[J]. Journal of Applied Mechanics, 1963, 30(3):384-390. doi: 10.1115/1.3636566 [8] Almohandes A A, Abdel-Kader M S, Eleiche A M. Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates[J]. Composites Part B: Engineering, 1996, 27(5):447-458. doi: 10.1016/1359-8368(96)00011-X [9] Chen X W, Li Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile[J]. International Journal of Impact Engineering, 2003, 28 (5):513-536. doi: 10.1016/S0734-743X(02)00077-5 [10] Chen X W, Li Q M, Fan S C. Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt projectile[J]. International Journal of Impact Engineering, 2005, 31(7): 877-893. doi: 10.1016/j.ijimpeng.2004.04.011 [11] 陈小伟, 梁冠军, 姚勇, 等.平头弹穿透金属靶板的模式分析[J].力学学报, 2009, 41(1):84-90. doi: 10.3321/j.issn:0459-1879.2009.01.012Chen Xiaowei, Liang Guanjun, Yao Yong, et al. Perforation modes of metal plates struck by a blunt rigid projectile[J]. Chinese Journal of Theoretical and Applied mechanics, 2009, 41(1):84-90. doi: 10.3321/j.issn:0459-1879.2009.01.012 [12] Chen X W, Liang G J. Perforation modes of metal plates struck by a blunt rigid projectile[J]. Engineering Transactions, 2012, 60(1):15-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb200901012 [13] Bϕrvik T, Hopperstad O S, Langseth M, et al. Effect of target thickness in blunt projectile penetration of Weldox 460E steel plates[J]. International Journal of Impact Engineering, 2003, 28(4):413-464. doi: 10.1016/S0734-743X(02)00072-6 [14] Dey S, Bϕrvik T, Hopperstad O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes[J]. International Journal of Impact Engineering, 2004, 30(8):1005-1038. http://cn.bing.com/academic/profile?id=63c9cdab5fc4517c3691043fa16af0e8&encoded=0&v=paper_preview&mkt=zh-cn [15] 潘建华, 文鹤鸣.平头弹丸正撞击下延性金属靶板的破坏模式[J].高压物理学报, 2007, 21(2):157-164. doi: 10.3969/j.issn.1000-5773.2007.02.007Pan Jianhua, Wen Heming. Failure modes of ductile metal plates under normal impact by flat-ended projectiles[J]. Chinese Journal of High Pressure Physics, 2007, 21(2):157-164. doi: 10.3969/j.issn.1000-5773.2007.02.007 期刊类型引用(14)
1. 孙宪宏,魏玉阳,赵新宇,谢超,王萌禾,乔晓光,严星. 定向分簇射孔对套管外光纤的影响. 测井技术. 2025(01): 130-138 . 百度学术
2. 王志平,徐双喜,陈威,乐京霞,柴威,李晓彬. 带泄压孔的舱室内爆冲击波载荷特性. 中国舰船研究. 2023(03): 155-162 . 百度学术
3. 朱宇,王猛,费广磊,何志杰,李冉,陈刚. 基于物质点法的单开孔爆炸分离数值模拟. 工程爆破. 2023(03): 63-70 . 百度学术
4. 王昭,吴祖堂,杨军,李焰,刘文祥. 新型薄膜式压力传感器的参数设计. 爆炸与冲击. 2023(07): 174-184 . 本站查看
5. 王高辉,孔维伟,卢文波,吕林梅,陈叶青. 侵彻爆炸荷载作用下高拱坝局部毁伤效应评估. 防护工程. 2023(06): 31-37 . 百度学术
6. 崔浩,郭锐,宋浦,顾晓辉,周昊,杨永亮,江琳,俞旸晖. BP-GA算法确定未反应炸药的JWL状态方程参数. 含能材料. 2022(01): 43-49 . 百度学术
7. 崔浩,郭锐,宋浦,顾晓辉,周昊,邢柏阳. 基于遗传算法辨识炸药JWL状态方程参数的研究. 振动与冲击. 2022(09): 174-180+209 . 百度学术
8. 朱宇,王猛,何志杰,赵康,秦雨,陈刚. 轴向打孔装药爆炸切断TC4钛合金板的研究. 爆破器材. 2022(03): 43-49 . 百度学术
9. 刘超龙,叶阳,曾亚武,程树范. 气体密度和初压对炸药爆炸压力衰减的影响. 中国安全生产科学技术. 2022(11): 126-132 . 百度学术
10. 焦晓龙,赵鹏铎,姚养无,张磊,李旭东,池海. 基于仿真与量纲分析的不同药量TNT内爆下多舱室结构毁伤规律研究. 爆炸与冲击. 2020(08): 124-133 . 本站查看
11. 赵星宇,白春华,姚箭,孙彬峰. 燃料空气炸药爆轰产物JWL状态方程参数计算. 兵工学报. 2020(10): 1921-1929 . 百度学术
12. 段红波,张聪瑞,帅金山,贺伟奇,任高峰,张文浩. 复杂充填体下残矿回采爆破振动效应研究. 爆破. 2018(02): 61-66 . 百度学术
13. 贺伟奇,任高峰,冯广胜,谭海,王玉杰,叶剑红,何坤鹏,强小刚. 水下沉井黏土层爆破参数优化选择研究. 爆破. 2017(04): 125-132 . 百度学术
14. 江国华,段云. 柱形装药在典型岩体内应力波的数值计算. 铜业工程. 2016(06): 29-32 . 百度学术
其他类型引用(20)
-