液滴在激波冲击下的破裂过程

王超 吴宇 施红辉 肖毅

王超, 吴宇, 施红辉, 肖毅. 液滴在激波冲击下的破裂过程[J]. 爆炸与冲击, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06
引用本文: 王超, 吴宇, 施红辉, 肖毅. 液滴在激波冲击下的破裂过程[J]. 爆炸与冲击, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06
Wang Chao, Wu Yu, Shi Honghui, Xiao Yi. Breakup process of a droplet under the impact of a shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06
Citation: Wang Chao, Wu Yu, Shi Honghui, Xiao Yi. Breakup process of a droplet under the impact of a shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06

液滴在激波冲击下的破裂过程

doi: 10.11883/1001-1455(2016)01-0129-06
基金项目: 

国家自然科学基金项目 10802077

详细信息
    作者简介:

    王超(1973—),男,博士,讲师

    通讯作者:

    施红辉, hhshi@zstu.edu.cn

  • 中图分类号: O357.5

Breakup process of a droplet under the impact of a shock wave

  • 摘要: 对液滴在入射激波作用下的变形破碎过程进行了实验研究和数值模拟,得知数值模拟结果与实验结果基本吻合,以及在什么情况下两者出现分歧。结果显示,液滴在激波的作用下要经历从压缩变形、RM不稳定性变形、细小液雾剥离到全部雾化破碎等过程。结果还表明,不同液滴直径、入射激波马赫数和液滴介质等参数下的液滴变形破碎的发展趋势是一致的,而其发展速度明显则不同。其中Weber数的增加加速了液滴的破碎,而Ohnesorge数和黏性的增加则抑制了液滴的破碎。
  • 图  1  激波管装置示意图

    Figure  1.  Sketch of shock tube

    图  2  计算区域示意图

    Figure  2.  Schematic diagram of calculating range

    图  3  实验1~3的数值模拟结果(左)与实验照片(右)(Δt=0.25 ms)

    Figure  3.  Numerical simulation (left) and experimental (right) results of experiments 1-3

    图  4  实验1~3液滴横向直径与初始直径之比

    Figure  4.  Ratio of transverse diameter andinitial diameter of experiments 1-3

    图  5  实验4的数值模拟结果(左)与实验照片(右)(Δt=0.25 ms)

    Figure  5.  Numerical simulation (left) andexperimental (right) results of experiment 4

    图  6  实验5的数值模拟结果(Δt=0.25 ms)

    Figure  6.  Numerical simulation results of experiment 5

    图  7  实验5和3的数值模拟涡量图(Δt=0.25 ms)

    Figure  7.  Vorticity cloud of experiments 5 and 3

    表  1  实验参数

    Table  1.   Experimental parameters

    实验 液滴 Ma d0/mm We Oh
    1 1.10 1.64 94.48 0.002 9
    2 1.10 2.16 124.44 0.002 6
    3 1.10 2.46 141.72 0.002 4
    4 1.25 1.68 518.75 0.002 9
    5 甘油 1.10 2.46 167.23 3.450 0
    下载: 导出CSV
  • [1] 施红辉, 罗喜胜.可压缩性和高速多相流动[M].合肥:中国科学技术大学出版社, 2014: 404-443.
    [2] Lane W. Shatter of drops in streams of air[J]. Industrial and Engineering Chemistry, 1951, 43(6):1312-1317. doi: 10.1021/ie50498a022
    [3] Krauss W E. Deformation fragmentation of water drops due to shock wave impact[R]. AIAA 71-392, 1971.
    [4] Engel O. Fragmentation of waterdrops in the zone behind an air shock[J]. Journal of Research of the National Bureau of Standards, 1958, 60(3):245-280. doi: 10.6028/jres.060.029
    [5] Ranger A, Nicholls J. Aerodynamics shattering of liquid drops[J]. AIAA Journal, 1969, 7(2):285-290. doi: 10.2514/3.5087
    [6] Kauffman C, Nicholls J. Shock-wave ignition of liquid fuel drops[J]. AIAA Journal, 1971, 9(5):880-885. doi: 10.2514/3.6290
    [7] Wierzba A, Takayama K. Experimental investigation of aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044
    [8] Hsiang L P, Faeth G. Near-limit drop deformation and secondary breakup[J]. International Journal of Multiphase Flow, 1992, 18(5):635-652. doi: 10.1016/0301-9322(92)90036-G
    [9] Hsiang L P, Faeth G. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4):545-560. doi: 10.1016/0301-9322(94)00095-2
    [10] 陆守香, 秦友花.激波诱导的液滴变形和破碎[J].高压物理学报, 2000, 14(2):151-154. doi: 10.3969/j.issn.1000-5773.2000.02.012

    Lu Shouxiang, Qin Youhua. Deformation and breakup of droplets behind shock wave[J]. Chinese Journal of High Pressure Physics, 2000, 14(2):151-154. doi: 10.3969/j.issn.1000-5773.2000.02.012
    [11] 耿继辉, 叶经方, 王健, 等.激波诱导液滴变形和破碎现象实验研究[J].工程热物理学报, 2003, 24(5): 797-800. doi: 10.3321/j.issn:0253-231X.2003.05.023

    Geng Jihui, Ye Jingfang, Wang Jian, et al. Experimental investigation on phenomena of shock wave induced droplet deformation and breakup[J]. Journal of Engineering Thermophysics, 2003, 24(5):797-800. doi: 10.3321/j.issn:0253-231X.2003.05.023
    [12] 蔡斌, 李磊, 王照林.液滴在气流中破碎的数值分析[J].工程热物理学报, 2003, 24(4): 613-616. doi: 10.3321/j.issn:0253-231X.2003.04.021

    Cai Bin, Li Lei, Wang Zhaolin. Numerical analysis of liquid drop breakup in airflow[J]. Journal of Engineering Thermophysics, 2003, 24(4):613-616. doi: 10.3321/j.issn:0253-231X.2003.04.021
    [13] 姚雯, 冯其京, 郝鹏程, 等.欧拉网格中基于VOF方法的表面张力项处理方法[J].北京理工大学学报, 2010, 30(3):361-363;368. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201003024

    Yao Wen, Feng Qijing, Hao Pengcheng, et al. Investigation of surface tension solver based on VOF method in Euler meshes[J]. Transactions of Beijing Institute of Technology, 2010, 30(3):361-363;368. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201003024
    [14] 楼建峰, 洪滔, 朱建士.液滴在气体介质中剪切破碎的数值模拟研究[J].计算力学学报, 2011, 28(2): 210-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201102010

    Lou Jianfeng, Hong Tao, Zhu Jianshi. Numerical study on shearing breakup of liquid droplet in gas medium[J]. Chinese Journal Computational Mechanics, 2011, 28(2):210-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201102010
    [15] Ubbink O. Numerical prediction of two fluid system with sharp interfaces[D]. London: Imperial College of Science, Technology & Medicine, 1997.
    [16] 王福军.计算流体动力学分析: CFD软件原理与应用[M].北京:清华大学出版社, 2004: 15-45.
    [17] 吴宇.液滴和液柱在激波诱导的高速气流作用下变形破碎过程的数值计算[D].杭州: 浙江理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10338-1014228506.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3926
  • HTML全文浏览量:  960
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-11-17
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回