Air blast performance of RDX-based aluminum fiber explosive
-
摘要: 将铝纤维炸药与传统铝粉炸药和RDX炸药进行空中爆炸实验并得到压力时程曲线,经过分析计算得到3种炸药的压力峰值、二次击波、正相持续时间以及冲量。结果表明:铝纤维炸药的压力峰值相对于RDX没有明显提高,但其压力时程曲线衰减速度慢于RDX的,使铝纤维炸药的正相持续时间大于RDX,铝纤维炸药的冲击波冲量相对于RDX的平均提高了18%,与铝粉炸药的相当。铝纤维炸药的二次击波超压幅值与到达时间与铝粉炸药的接近,而铝纤维炸药的二次击波到达时间早于RDX,说明二次击波的超压幅值与到达时间与炸药类型有关。Abstract: The pressure history curves of aluminum fiber explosive and traditional aluminized explosives were measured by air blast experiments, and then the peak pressure, the secondary shock wave, the time of positive phase and the impulse were obtained by analyzing the curves. The result show that the peak pressure of the aluminum fiber explosive is not improved obviously with regard to the matrix explosives (RDX). The pressure decay rate of the aluminum fiber explosive is slower than that of RDX, resulting in that the time of the positive phase of the aluminum fiber explosive is longer than that of RDX. Compared with RDX, the impulse of the aluminum fiber explosive increases on the average by 18%, close to that of the traditional aluminized explosive. The amplitude and the occurrence of the secondary shock wave of the aluminum fiber explosive are the same as the traditional aluminized explosives and the secondary shock wave of aluminum fiber explosive occurs earlier than the matrix explosives (RDX), which shows that the amplitude and the occurrence time of the secondary shock wave are correlated with the types of explosive.
-
随着现代工业发展,单一金属材料的性能已很难满足要求,层状金属复合板结合了金属组元各自的优点,可获得单一金属材料不具有的物理和化学性能,同时节约了大量贵重金属材料,具有很高的经济价值与应用前景。目前层状金属复合板广泛采用爆炸法进行焊接[1]。
铝合金具有密度小、导电性好、导热率高、耐腐蚀等优点,其复合板材已广泛应用于航空航天、汽车、机械制造、船舶、化工等领域。由于铝合金与钢直接爆炸焊接存在一定困难,通常在基覆板中间加入纯铝、钛、镍等过渡层,然后经过2次或多次爆炸焊接将铝合金与钢复合在一起,形成铝合金-铝-钢、铝合金-钛-钢、铝合金-钛-镍-钢等3层或者多层结构的复合板[2-5],但爆炸焊接工序多、效率低、成本较高。
本文中采用铝合金与表面开有燕尾槽的钢板进行直接爆炸焊接,为铝合金与钢的爆炸焊接提供一种新方法。其具有简化焊接工序、降低焊接药量、减少环境污染以及提高焊接质量和效率等优点。
1. 实验材料及方法
爆炸焊接基板为Q345钢,尺寸为15 mm×400 mm×400 mm,覆板为5083铝合金,尺寸为4 mm×410 mm×410 mm。其物理性能和机械性能如表 1所示。表中Tm、c、ρ和HV分别为金属材料的熔点、体积声速、密度和维氏硬度;σs和σb分别为金属材料的拉伸强度和屈服强度。
表 1 基板与覆板的物理和机械性能Table 1. Physical and mechanical properties of flyer and base plates金属材料 Tm/℃ ρ/(g·cm-3) HV σs/MPa σb/MPa c/(m·s-1) 5083铝合金 570~640 2.72 61 125 270 6 300 Q345钢 1 523 7.85 168 385 609 6 000 在基板表面分别沿着横向和纵向开出上底面2 mm、下底面3 mm、高1 mm的燕尾槽,其中燕尾槽上底面的间距为3 mm,如图 1所示。
实验以乳化基质、敏化剂膨胀珍珠岩以及稀释剂工业食盐调配成的低爆速乳化炸药作为焊接炸药。焊接炸药的药框采用铝蜂窝板,材质为厚50 μm的3003H24铝合金,蜂窝孔呈正六边形,边长8 mm,如图 2所示。其具有结构稳定、强度高、刚度大、平面度好等优点。根据焊接药量选择合适高度的铝蜂窝板后,将炸药填入铝蜂窝板孔隙,制成铝蜂窝炸药,如图 3所示。铝蜂窝板可保证各位置焊接炸药厚度相同。
爆炸焊接装置为平行安装结构,起爆端位于炸药的中心位置,如图 4所示。爆炸焊接后采用Carl Zeiss Axio Imager A1m型金相显微镜和XL-30 ESEM型环境电子扫描显微镜观察铝合金与燕尾槽钢爆炸复合板结合界面的微观形貌,然后再采用MTS-810型万能试验机进行拉伸和剪切实验,检测爆炸复合板的力学性能。
2. 铝合金-钢爆炸焊接参数
选择合理的焊接参数是实现爆炸焊接并获得良好焊接质量的前提和关键。动态碰撞角、碰撞点移动速度、碰撞速度是爆炸焊接的主要动态参数,其中任意两参数相互独立,其在同一平面内构成了爆炸焊接区域,即爆炸焊接窗口[6]。在此窗口内均可获得良好的焊接质量,而且一般爆炸焊接下限附近复合板的焊接质量最好[7-8]。
同种金属材料爆炸焊接产生金属射流的最小碰撞速度vp, min以及碰撞压力p公式为[9-10]:
vp⋅min=(σbρ)1/2 (1) p=12ρvpc (2) 式中:σb为金属材料的抗拉强度,ρ为金属材料的密度,c为金属材料的体积声速, vp为金属材料的碰撞速度。
根据式(1)得到两种相同金属材料的最小碰撞速度vp, min1和vp, min2后,代入式(2)得到相应的碰撞压力pmin1和pmin2,取pmin=max(pmin1, pmin2),则不同金属材料间的最小碰撞速度vp, min为[10]:
vp,min=pmin(1c1ρ1+1c2ρ2) (3) 式中:ρ1和ρ2分别为覆板和基板的密度,c1和c2分别为覆板和基板的体积声速。
当碰撞点移动速度vcp等于临界碰撞点移动速度vc时,金属表面开始从层流过渡到湍流,为获得良好的焊接质量,碰撞点移动速度vcp应大于临界碰撞点移动速度vc小于金属材料的体积声速c。临界碰撞点移动速度vc计算公式为[11]:
vc=[2Re(H1+H2)ρ1+ρ2]1/2 (4) 式中:Re为适用流动过程的雷诺数,取Re=10.6;H1和H2分别为覆板和基板的维氏硬度;ρ1和ρ2分别为覆板和基板的密度。
根据式(1)~(4)得到铝合金与钢爆炸焊接的最小碰撞速度vp, min=522 m/s、碰撞压力p=4.5 GPa、临界碰撞点移动速度vc=2 122 m/s。
S.W.Stivers等[10]根据临界碰撞点移动速度vc给出了相应碰撞点移动速度vcp大于2 000 m/s、小于2 500 m/s的表达式:
vcp=vc+200 (5) 炸药爆速vd与碰撞点移动速度vcp相等, 均为2 222 m/s,所以选用爆速约为2 300 m/s的乳化炸药进行爆炸焊接实验。A.A.Ezra[12]认为产生强烈塑性流动和金属射流的临界压力pc大约为金属材料静态屈服强度的10~12倍,则铝合金与钢的临界碰撞压力pc分别为1.25~1.50 GPa和3.85~4.62 GPa。铝合金与燕尾槽钢爆炸焊接实验的碰撞速度vp靠近铝合金-钢爆炸复合的最小碰撞速度vp, min,取vp=600 m/s,此时界面的碰撞压力p=5.1 GPa,则铝合金与燕尾槽钢内表面产生强烈的塑性变形和金属射流。
覆板与基板爆炸焊接简化为一维运动,则对于γ=2.5乳化炸药的覆板碰撞速度vp可表达为[13]:
vp=1.2vd(1+3227R)1/2−1(1+3227R)1/2+1 (6) 式中:R=ρ0δ0/ρ1δ1,δ0=Wg/ρ0。
覆板和基板间距的经验公式为[10]:
h=0.2(δ0+δ1) (7) 式中:R为质量比;ρ0为炸药密度,kg/m3;Wg为单位面积炸药药量,g/cm2;h为基板和覆板的间距,cm;δ1为覆板厚度,cm;δ为焊接炸药厚度,mm。
由式(5)~(7)得到铝合金与燕尾槽钢爆炸焊接参数,炸药密度为0.78 g/cm3、炸药与覆层的质量比为1.19、炸药药量为2 168 g和基层覆层间距为4.1 mm。
3. 实验结果与分析
3.1 铝合金-燕尾槽钢爆炸复合板
爆炸焊接后进行较平、打磨,得到厚18 mm的铝合金-燕尾槽钢复合板,其中铝合金层厚3 mm,钢层厚15 mm。然后沿着爆轰方向切割复合板,观察界面结合紧密,焊接质量良好,靠近边缘处的复合板截面如图 5所示。由于覆板面积比基板大,将空气稀疏波作用范围引向基板边缘之外,使得靠近边缘处铝合金与燕尾槽钢的碰撞压力基本不受影响,而且铝合金与钢依靠燕尾槽相互挤压啮合在一起,抑制反射拉伸波将界面拉开,所以铝合金-燕尾槽钢爆炸复合板的边缘处基本无边界效应。由于铝合金与燕尾槽钢采用一次爆炸焊接工艺复合在一起,减少了焊接工序以及药量,提高了焊接质量和效率,同时减少了环境的污染。
传统铝合金与钢直接爆炸焊接时在塑性变形热和绝热压缩热作用下界面易产生过熔现象以及多种脆性金属间化合物,而且铝合金的凝固温度范围较宽,使得界面凝固时间以及受反射拉伸波作用时间延长,造成焊接质量较差,甚至界面被拉开,所以铝合金与钢直接爆炸焊接存在一定的困难。本文中采用表面开有燕尾槽的钢板与铝合金进行直接爆炸焊接。在焊接炸药能量的作用下,一部分铝合金与燕尾槽上底面高速撞击,使得碰撞区铝合金与钢的内表面均产生强烈的塑性变形,物理性质类似流体,此时形成的金属射流消除了碰撞点前金属表面的氧化膜和污染物,露出具有活性的新鲜金属,使其在高温、高压以及剧烈的塑性变形作用下进行冶金结合,另一部分铝合金则向燕尾槽内高速运动,被压入燕尾槽的铝合金与燕尾槽下底面进行冶金结合过程中,同时向燕尾槽的倾斜面运动,充满整个燕尾槽,此时界面空气受到绝热压缩,使铝合金与燕尾槽倾斜面在绝热压缩热的作用下形成中间过渡层,从而复合在一起。总之,铝合金与燕尾槽钢在燕尾槽的挤压啮合作用下充分进行冶金结合,抑制反射拉伸波将界面拉开,实现直接爆炸焊接。
3.2 铝合金-燕尾槽钢爆炸复合板力学性能分析
界面结合强度是衡量焊接质量优劣的重要指标之一,按照GB/T 6396-2008《复合钢板力学及工艺性能试验方法》和GB/T 6396-2002《金属材料室温拉伸试验方法》分别切割4个平行试件进行拉伸实验和剪切实验,结果如表 2所示, 表中Sb和σb分别为拉伸试件的截面面积和拉伸强度,Sτ和στ分别为剪切试件的结合面积和剪切强度。。
表 2 爆炸复合板的力学性能实验结果Table 2. Experimental results of mechanical properties of explosive clad plate实验编号 Sb/(mm×mm) σb/MPa Sτ/(mm×mm) στ/MPa 1 10×10 522 4.5×25 178 2 10×10 538 4.5×25 183 3 10×10 527 4.5×25 190 4 10×10 543 4.5×25 172 由表 2可知,铝合金-燕尾槽钢爆炸复合板的平均拉伸强度为532.5 MPa,平均剪切强度为180.8 MPa。铝合金-燕尾槽钢复合板的理论抗拉强度下限为507.3 MPa[14],复合板4个平行试件的抗拉强度均大于其理论抗拉强度下限。一般在冲击载荷作用下金属材料的抗拉强度将增大,所以铝合金-燕尾槽钢爆炸复合板的抗拉强度大于其理论抗拉强度下限。
铝合金-燕尾槽钢爆炸复合板拉剪实验时界面未发生分离,断裂位置位于铝合金一侧,如图 6所示。由表 2可知,铝合金-燕尾槽钢爆炸复合板界面的剪切强度大于172 MPa,满足铝合金-钢复合板结合强度的要求。铝合金与钢在冶金结合和燕尾槽的挤压啮合作用下抑制复合板界面被拉开,同时其结合面积比传统铝合金-钢复合板大145%,使复合板界面的结合强度增大,所以拉剪实验时断裂位置位于铝合金一侧。
4. 铝合金-燕尾槽钢爆炸复合板结合界面的微观形貌观察
4.1 复合板结合界面金相组织
选取铝合金-燕尾槽钢爆炸复合板结合界面的4个位置进行金相组织观察,分别位于铝合金与燕尾槽上底面(A)、倾斜面(B)、下底面(C)以及拐角处(D),如图 7所示。
根据图 7标注的位置,采用金相显微镜得到铝合金与燕尾槽上底面、倾斜面、下底面以及拐角处结合界面的金相组织,如图 8所示。
由图 8中4个不同位置的金相组织可知,铝合金与燕尾槽上底面、倾斜面、下底面基本均以平直状的方式结合,铝合金与燕尾槽拐角处结合紧密。铝合金与钢产生金属射流的临界碰撞压力分别为1.25~1.50 GPa和3.85~4.62 GPa,而本实验中铝合金与燕尾槽钢爆炸焊接的碰撞压力为5.1 GPa,界面两侧产生强烈的塑性变形和金属射流,使得铝合金与钢以冶金结合的方式复合在一起。由于铝合金与钢的密度、熔点等物理性能相差较大,所以铝合金与钢复合板界面结合均呈平直状。
4.2 复合板结合界面扫描电镜
图 9(a)、(b)、(c)和(d)分别为铝合金与燕尾槽上底面、倾斜面、下底面以及拐角处结合界面的扫描电镜图,由图 9可知,铝合金与钢结合界面出现不同于铝合金层与钢层的中间过渡层,其中铝合金与燕尾槽上底面中间过渡层的厚度为0~20 μm;铝合金与燕尾槽倾斜面的中间过渡层的厚度为20~120 μm,其中含有气孔等微观缺陷;铝合金与燕尾槽下底面中间过渡层的厚度为0~30 μm。铝合金与燕尾槽倾斜面的中间过渡层厚度比铝合金与上底面和下底面的中间过渡层厚度大。
铝合金与燕尾槽钢在爆炸焊接过程中,界面空气受到绝热压缩向四周和燕尾槽运动,铝合金与燕尾槽上底面与下底面高速碰撞下产生剧烈的塑性变形以及塑性变形热,使其以直接结合和不连续的熔化块相结合的方式结合,而被压入燕尾槽的铝合金在与燕尾槽下底面冶金结合过程中,同时受到挤压向燕尾槽倾斜面运动,此时界面空气受到绝热压缩,在绝热压缩热的作用下产生厚度不均的连续熔化层,从而使铝合金与燕尾槽倾斜面结合在一起。由于铝合金与燕尾槽倾斜面的空气无法全部排出,进入熔体金属内产生气孔等微观缺陷。
4.3 铝合金-燕尾槽钢爆炸复合板结合界面能谱分析
为进一步研究铝合金-钢爆炸复合板的中间过渡层,分别对铝合金与燕尾槽上底面的界面进行线扫描能谱分析以及复合板的铝合金层、中间过渡层和钢层进行点扫描能谱分析,如图 10和表 3所示。
表 3 界面不同位置的化学成分(摩尔分数)Table 3. Chemical components at different points on the interface (mole fraction)界面位置 xAl/% xFe/% 1 99.16 0.84 2 73.32 26.68 3 76.11 23.89 4 72.45 27.55 5 0.43 99.57 由图 10可知,对铝合金与燕尾槽钢上底面的界面进行线扫描,在中间过渡层出现宽约20 μm的平台,并根据表 3中间过渡层铝、铁的原子分数比例可知,表明中间过渡层生成了含有Al和Fe的金属间化合物。铝与钢爆炸焊接过程中界面两侧金属在高温、高压和强烈的塑性变形作用下产生熔化,可能生成FeAl3、FeAl2、FeAl等多种脆性金属间化合物[15]。
5. 结论
(1) 铝合金与燕尾槽钢在燕尾槽的挤压啮合作用下充分进行冶金结合,抑制反射拉伸波将界面拉开,从而实现爆炸复合,为铝合金与钢的爆炸焊接提供一种新方法。
(2) 铝合金与燕尾槽钢爆炸复合板界面结合紧密,焊接质量良好。拉剪实验时试件断裂位置位于铝合金一侧,其剪切强度大于172 MPa,满足Al/Fe复合板结合强度的要求。
(3) 铝合金与燕尾槽上底面、倾斜面、下底面结合界面均呈平直状,其中铝合金与燕尾槽上底面、下底面以直接结合和不连续的熔化块相结合的方式结合,铝合金与燕尾槽倾斜面以连续的熔化层的方式结合。铝合金与燕尾槽倾斜面的中间过渡层厚度比铝合金与燕尾槽上底面以及下底面中间过渡层厚度大,而且其中间过渡层含有气孔等微观缺陷。
(4) 5083/Q345复合板界面的中间过渡层生成了含有Al和Fe的金属间化合物。
-
表 2 3种炸药正相持续时间比较
Table 2. Comparison of positive phase duration of the shock wave between three kinds of explosives
Test T+/μs RDX RDX with Al fiber RDX with Al powder 1 501.00 531.76 542.00 2 467.81 500.00 535.00 3 480.20 533.00 506.64 4 532.33 527.00 538.68 -
[1] Brode H L. Blast wave from a spherical charge[J]. Physics of Fluids, 1959, 2(2):217-229. doi: 10.1063-1.1705911/ [2] 於津, 彭金华, 张陶, 等.基于MATLAB的FAE战斗部超压计算的公式拟合[J].弹箭与制导学报, 2004(S4):306-308. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD2004S4014.htmYu Jin, Peng Jinhua, Zhang Tao, et al. Formula fitting to overpressure calculation of FAE warhead in MATLAB[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004(S4):306-308. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD2004S4014.htm [3] 张陶, 惠君明.FAE爆炸场超压与威力的实验研究[J].爆炸与冲击, 2004, 24(3):176-181. http://www.bzycj.cn/article/id/9939Zhang Tao, Hui Junming. Experimental research on the overpressure and power in the FAE blast field[J]. Explosion and Shock Waves, 2004, 34(3):176-181. http://www.bzycj.cn/article/id/9939 [4] 牛余雷, 王晓峰, 冯晓军.双元炸药装药空中爆炸的输出特性[J].火炸药学报, 2009, 32(4):45-49. doi: 10.3969/j.issn.1007-7812.2009.04.012Niu Yulei, Wang Xiaofeng, Feng Xiaojun. Characteristics of air explosion output for dual explosive charge[J]. Chinese Journal of Explosives & Propellants, 2009, 32(4):45-49. doi: 10.3969/j.issn.1007-7812.2009.04.012 [5] 仲倩, 王伯良, 黄菊, 等.TNT空中爆炸超压的相似律[J].火炸药学报, 2010, 33(4):32-35. doi: 10.3969/j.issn.1007-7812.2010.04.008Zhong Qian, Wang Boliang, Huang Ju, et al. Study on the similarity law of TNT explosion overpressure in air[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4):32-35. doi: 10.3969/j.issn.1007-7812.2010.04.008 [6] 北京工业学院八系.爆炸及其作用:下册[M].北京:国防工业出版社, 1979. [7] 王建灵, 郭炜, 冯晓军.TNT、PBX和Hexel空中爆炸冲击波参数的实验研究[J].火炸药学报, 2008, 31(6):42-44. doi: 10.3969/j.issn.1007-7812.2008.06.012Wang Jianling, Guo Wei, Feng Xiaojun. Experimental research on the air explosion shock wave parameters of TNT, PBX, and Hexel[J]. Chinese Journal of Explosives & Propellants, 2008, 31(6):42-44. doi: 10.3969/j.issn.1007-7812.2008.06.012 [8] 孙业斌, 惠君明, 曹欣茂.军用混合炸药[M].北京:兵器工业出版社, 1995. [9] 林谋金, 马宏昊, 沈兆武, 等.铝纤维对黑索今水下爆炸性能的影响[J].爆炸与冲击, 2014, 34(3):379-384. doi: 10.11883/1001-1455(2014)03-0379-06Lin Moujin, Ma Honghao, Shen Zhaowu, et al. The effect of aluminum fiber on underwater detonation performance of RDX[J]. Explosion and Shock Waves, 2014, 34(3):379-384. doi: 10.11883/1001-1455(2014)03-0379-06 [10] Ethridge N H. A procedure for reading and smoothing pressure-time data from HE and nuclear explosions[R]. Ballistic Research Laboratories, 1965. [11] 亨利奇J.爆炸动力学及其应用[M].熊建国, 译.北京: 科学出版社, 1987: 161-324. [12] 奥尔连科.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2011. [13] 宋浦, 肖川, 梁安定, 等.炸药空中与水中爆炸冲击波超压的换算关系[J].火炸药学报, 2008, 31(4):10-13. doi: 10.3969/j.issn.1007-7812.2008.04.003Song Pu, Xiao Chuan, Liang Anding, et al. Conversion relation of shock wave overpressure about underwater explosion and air blast[J]. Chinese Journal of Explosives & Propellants, 2008, 31(4):10-13. doi: 10.3969/j.issn.1007-7812.2008.04.003 [14] 贝克W E.空中爆炸[M].江科, 译.北京: 原子能出版社, 1982. -