油气爆炸的氮气非预混抑制实验

张培理 杜扬

张培理, 杜扬. 油气爆炸的氮气非预混抑制实验[J]. 爆炸与冲击, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06
引用本文: 张培理, 杜扬. 油气爆炸的氮气非预混抑制实验[J]. 爆炸与冲击, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06
Zhang Peili, Du Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion And Shock Waves, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06
Citation: Zhang Peili, Du Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion And Shock Waves, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06

油气爆炸的氮气非预混抑制实验

doi: 10.11883/1001-1455(2016)03-0347-06
基金项目: 

国家自然科学基金项目 51276195

重庆市自然科学基金项目 cstc2016jcyjA1617

详细信息
    作者简介:

    张培理(1985-),男,博士,讲师

    通讯作者:

    杜扬,zpl6123@163.com

  • 中图分类号: O381

Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion

  • 摘要: 依靠激波管可视化实验台架,完成了油气爆炸的氮气非预混抑制实验,获得了火焰前锋在氮气非预混段内衰减、熄灭过程的高速摄影照片。通过对实验数据和高速摄影照片的分析,讨论了油气爆炸氮气非预混抑制过程的超压特性和火焰行为。结果表明,采用氮气非预混手段能显著降低油气爆炸过程的超压与超压上升速率。油气爆炸的氮气非预混抑爆过程经历了惯性相持期、抑制衰减期和扩散熄灭期3个阶段。氮气分子作为第三体参与化学反应并携带走高能自由基的能量,促使链式反应向中止链大量发展,这是油气爆炸氮气非预混抑制过程的主要机理。抑制衰减期的火焰由衰减抑制区和核心区火焰构成,火焰与氮气的相互作用主要发生在衰减抑制区内。在抑制衰减期内,火焰速度的衰减可用线性公式描述。
  • 图  1  主要实验装置布置图

    Figure  1.  Schematic illustration of the main experimental setup

    图  2  有无氮气非预混抑制时的超压曲线

    Figure  2.  Curves of overpressure of the explosion with and without suppression by non-premixed nitrogen

    图  3  高速摄影仪捕捉到的火焰前锋在氮气中熄灭的过程

    Figure  3.  Photos of flame front in extinction, captured by high speed camera

    图  4  抑制衰减阶段的火焰结构

    Figure  4.  Flame structure in the phase of suppression/attenuation

    图  5  氮气非预混抑爆过程中火焰速度随时间的变化

    Figure  5.  Variation of the flame speed with time in suppression process

    表  1  实验前后激波管内主要气体组分的体积分数

    Table  1.   Volume fraction of main gas components before and after the experiment

    测量条件 φ/%
    油气 O2 CO2 CO
    实验前 1.61 20.42 0.01 0
    实验后 1.19 15.24 2.86 0.89
    下载: 导出CSV
  • [1] Moore P E. Suppressants for the control of industrial explosions[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1):119-123. doi: 10.1016/0950-4230(95)00045-3
    [2] Thomas G O, Edwards M J, Edwards D H. Studies of detonation quenching by water sprays[J]. Combustion Science and Technology, 1990, 71:233-245. doi: 10.1080/00102209008951634
    [3] Liu Q, Hu Y, Bai C, et al.Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):310-316. doi: 10.1016/j.jlp.2011.05.004
    [4] Catlin C. Passive explosion suppression by blast-induced atomisation from water containers[J]. Journal of Hazardous Materials, 2002, 94(2):103-132. doi: 10.1016/S0304-3894(02)00119-X
    [5] Nie B, He X, Zhang R, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation[J]. Journal of Hazardous Materials, 2011, 192(2):741-747 doi: 10.1016/j.jhazmat.2011.05.083
    [6] Razus D, Brinzea V, Mitu M, et al. Inerting effect of the combustion products on the confined deflagration of liquefied petroleum gas-air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4):463-468. doi: 10.1016/j.jlp.2009.03.002
    [7] 李兴虎.氮气稀释丙烷空气混合气的层流火焰速度测量[J].燃烧科学与技术, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018

    Li Xinghu. Measurement of laminar burning velocity on diluted air-propane mixture[J]. Journal of Combustion Science and Technology, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018
    [8] Molnarne M, Mizsey P, Schröder V. Flammability of gas mixtures: Part 2: Influence of inert gases[J]. Journal of Hazardous Materials, 2005, 21(1/2/3):45-49. http://cn.bing.com/academic/profile?id=5986ec5292b0eaacc299006ae1fb8116&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Ko B C, Cheong K-H, Nam J-Y. Fire detection based on vision sensor and support vector machines[J]. Fire safety Journal, 2009, 44(3):322-329. doi: 10.1016/j.firesaf.2008.07.006
    [10] Liu C B, Ahuja N. Vision based fire detection[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004, 4: 134-137. https://dl.acm.org/citation.cfm?id=1021180
    [11] Zhang P, Du Y, Zhou Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1279-1284. doi: 10.1016/j.jlp.2013.07.003
    [12] Yang D, Li Z P, Hong O Y. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions[J]. Journal of Fire Protection Engineering, 2013, 23(3):226-238. doi: 10.1177/1042391513486464
    [13] Du Y, Zhang P, Zhou Y, et al. Suppressions of gasoline-air mixture explosion by non-premixed nitrogen in a closed tunnel[J]. Journal of Loss Prevention in the Process Industries, 2014, 31:113-120. doi: 10.1016/j.jlp.2014.07.012
    [14] 赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社, 1996:31.
    [15] Stephen R T. An introduction to combustion:concepts and application[M]. New York: The McGraw-Hill Companies, 2000:201.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4478
  • HTML全文浏览量:  1225
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-27
  • 修回日期:  2015-03-23
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回